21 research outputs found
Segregation of Fluorescent Membrane Lipids into Distinct Micrometric Domains: Evidence for Phase Compartmentation of Natural Lipids?
Background: We recently reported that sphingomyelin (SM) analogs substituted on the alkyl chain by various fluorophores (e.g. BODIPY) readily inserted at trace levels into the plasma membrane of living erythrocytes or CHO cells and spontaneously concentrated into micrometric domains. Despite sharing the same fluorescent ceramide backbone, BODIPY-SM domains segregated from similar domains labelled by BODIPY-D-e-lactosylceramide (D-e-LacCer) and depended on endogenous SM.
Methodology/Principal Findings. We show here that BODIPY-SM further differed from BODIPY-D-e-LacCer or -glucosylceramide (GlcCer) domains in temperature dependence, propensity to excimer formation, association with a glycosylphosphatidylinositol (GPI)-anchored fluorescent protein reporter, and lateral diffusion by FRAP, thus demonstrating different lipid phases and boundaries. Whereas BODIPY-D-e-LacCer behaved like BODIPY-GlcCer, its artificial stereoisomer, BODIPY-L-t-LacCer, behaved like BODIPY- and NBD-phosphatidylcholine (PC). Surprisingly, these two PC analogs also formed micrometric patches yet preferably at low temperature, did not show excimer, never associated with the GPI reporter and showed major restriction to lateral diffusion when photobleached in large fields. This functional comparison supported a three-phase micrometric compartmentation, of decreasing order: BODIPY-GSLs > -SM > -PC (or artificial L-t-LacCer). Co-existence of three segregated compartments was further supported by double labelling experiments and was confirmed by additive occupancy, up to ~70% cell surface coverage. Specific alterations of BODIPY-analogs domains by manipulation of corresponding endogenous sphingolipids suggested that distinct fluorescent lipid partition might reflect differential intrinsic propensity of endogenous membrane lipids to form large assemblies.
Conclusions/Significance. We conclude that fluorescent membrane lipids spontaneously concentrate into distinct micrometric assemblies. We hypothesize that these might reflect preexisting compartmentation of endogenous PM lipids into non-overlapping domains of differential order: GSLs > SM > PC, resulting into differential self-adhesion of the two former, with exclusion of the latter
Telomeric DNA induces apoptosis and senescence of human breast carcinoma cells
INTRODUCTION: Cancer is a leading cause of death in Americans. We have identified an inducible cancer avoidance mechanism in cells that reduces mutation rate, reduces and delays carcinogenesis after carcinogen exposure, and induces apoptosis and/or senescence of already transformed cells by simultaneously activating multiple overlapping and redundant DNA damage response pathways. METHODS: The human breast carcinoma cell line MCF-7, the adriamycin-resistant MCF-7 (Adr/MCF-7) cell line, as well as normal human mammary epithelial (NME) cells were treated with DNA oligonucleotides homologous to the telomere 3' overhang (T-oligos). SCID mice received intravenous injections of MCF-7 cells followed by intravenous administration of T-oligos. RESULTS: Acting through ataxia telangiectasia mutated (ATM) and its downstream effectors, T-oligos induced apoptosis and senescence of MCF-7 cells but not NME cells, in which these signaling pathways were induced to a far lesser extent. In MCF-7 cells, experimental telomere loop disruption caused identical responses, consistent with the hypothesis that T-oligos act by mimicking telomere overhang exposure. In vivo, T-oligos greatly prolonged survival of SCID mice following intravenous injection of human breast carcinoma cells. CONCLUSION: By inducing DNA damage-like responses in MCF-7 cells, T-oligos provide insight into innate cancer avoidance mechanisms and may offer a novel approach to treatment of breast cancer and other malignancies
EcSAAM: a model studying the acceptance and effect of virtual agents, holograms and robots on loneliness and quality of life, for elderly care in a context of Covid or social isolation
We show the key role of the population of informal caregivers, the reason why the situation should worsen in the future, leaving more seniors not receiving enough social care. We show that virtual agents, holograms and robots might be possible complementary agents for human and elderly care. We also propose a reduced glossary for the virtual agents, retaining the clearest term of EVA. Then is introduced Loneliness: its relevance amongst seniors and more in a time of Covid crisis. A novel Service agents acceptance research model is presented, to be tested for elderly-care by a robot for now, and adapted to human care Globally, and overall human interaction in general when social link matters, and for all 3 agents: EVAs, Holograms or Robots
Three unrelated sphingomyelin analogs spontaneously cluster into plasma membrane micrometric domains
Micrometric lipid compartmentation at the plasma membrane is disputed. Using live confocal imaging, we found that three unrelated fluorescent sphingomyelin (SM) analogs spontaneously clustered at the outer leaflet into micrometric domains, contrasting with homogenous labelling by DiIC18 and TMA-DPH. In erythrocytes, these domains were round, randomly distributed, and reversibly coalesced under hypotonicity. BODIPY-SM and -glucosylceramide showed distinct temperature-dependence, in the same ranking as Tm for corresponding natural lipids, indicating phase behaviour. Scanning electron microscopy excluded micrometric surface structural features. In CHO cells, similar surface micrometric patches were produced by either direct BODIPY-SM insertion or intracellular processing from BODIPY-ceramide, ruling out aggregation artefacts. BODIPY-SM surface micrometric patches were refractory to endocytosis block or actin depolymerization and clustered upon cholesterol deprivation, indicating self-clustering at the plasma membrane. BODIPY-SM excimers further suggested clustering in ordered domains. Segregation of BODIPY-SM and -lactosylceramide micrometric domains showed coexistence of distinct phases. Consistent with micrometric domain boundaries, fluorescence recovery after photobleaching (FRAP) revealed restriction of BODIPY-SM lateral diffusion over long-range, but not short-range, contrasting with comparable high mobile fraction of BODPY-glucosylceramide in both ranges. Controlled perturbations of endogenous SM pool similarly affected BODIPY-SM domain size by confocal imaging and its mobile fraction by FRAP. The latter evidence supports the hypothesis that, as shown for BODIPY-SM, endogenous SM spontaneously clusters at the plasmalemma outer leaflet of living cells into ordered micrometric domains, defined in shape by liquid-phase coexistence and in size by membrane tension and cholesterol. This proposal remains speculative and calls for further investigations