35 research outputs found

    Ophthalmology

    Get PDF
    PURPOSE: Age-related macular degeneration(AMD) is a common multifactorial disease in elderly with a prominent genetic basis. Many risk variants have been identified, but the interpretation is still challenging. We investigated the genetic distribution of AMD-associated risk variants in a large European consortium, calculated attributable, and pathway-specific genetic risks, and assessed the influence of lifestyle on genetic outcomes. DESIGN: Pooled analysis of cross-sectional data from the E3 consortium. PARTICIPANTS: 17.174 individuals aged 45+ participating in 6 population-based cohort studies, 2 clinic based studies, 1 case-control study. METHODS: AMD was diagnosed and graded based on fundus photographs. Data on genetics, lifestyle, and diet were harmonized and completed where necessary. Minor allele frequencies and population attributable fraction (PAF) were calculated per single nucleotide polymorphism (SNP). A total genetic risk score (GRS) and pathway-specific risk scores (complement, lipid, extra-cellular matrix, other) were constructed based on the dosage of SNPs and conditional beta's; a lifestyle score was constructed based on smoking and dietary intake. RESULTS: The risk variants with the largest difference between late AMD cases and controls, and the highest PAFs were located in ARMS2 (rs3750846) and CHF (rs570618 and rs10922109). Both risk increasing and protective variants had the highest PAFs. Combining all genetic variants, the total genetic risk score ranged from -3.50 to 4.63, was normally distributed and increased with AMD severity. Of the late AMD cases, 1581/1777 (89%) had a positive total GRS. The complement pathway and ARMS2 were by far the most prominent genetic pathways contributing to late AMD (positive GRS 90% of late cases), but risk in three pathways was most frequent (35% of late cases). Lifestyle was a strong determinant of the outcome in each genetic risk category; unfavorable lifestyle increased the risk of late AMD at least twofold. CONCLUSIONS: Genetic risk variants contribute to late AMD in the majority of cases. However, lifestyle factors have a strong influence on the outcome of genetic risk, and should be a strong focus in patient management. Genetic risks in ARMS2 and the complement pathway are present in the majority of late AMD, but are mostly combined with risks in other pathways

    A multi‐omics approach identifies key regulatory pathways induced by long‐term zinc supplementation in human primary retinal pigment epithelium

    Get PDF
    In age-related macular degeneration (AMD), both systemic and local zinc levels decline. Elevation of zinc in clinical studies delayed the progression to end-stage AMD. However, the molecular pathways underpinning this beneficial effect are not yet identified. In this study, we used differentiated primary human fetal retinal pigment epithelium (RPE) cultures and long-term zinc supplementation to carry out a combined transcriptome, proteome and secretome analysis from three genetically different human donors. After combining significant differences, we identified the complex molecular networks using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA). The cell cultures from the three donors showed extensive pigmentation, development of microvilli and basal infoldings and responded to zinc supplementation with an increase in transepithelial electrical resistance (TEER) (apical supplementation: 443.2 ± 79.3%, basal supplementation: 424.9 ± 116.8%, compared to control: 317.5 ± 98.2%). Significant changes were observed in the expression of 1044 genes, 151 cellular proteins and 124 secreted proteins. Gene set enrichment analysis revealed changes in specific molecular pathways related to cell adhesion/polarity, extracellular matrix organization, protein processing/transport, and oxidative stress response by zinc and identified a key upstream regulator effect similar to that of TGFB1

    Metabolomics and Age-Related Macular Degeneration

    Get PDF
    Age-related macular degeneration (AMD) leads to irreversible visual loss, therefore, early intervention is desirable, but due to its multifactorial nature, diagnosis of early disease might be challenging. Identification of early markers for disease development and progression is key for disease diagnosis. Suitable biomarkers can potentially provide opportunities for clinical intervention at a stage of the disease when irreversible changes are yet to take place. One of the most metabolically active tissues in the human body is the retina, making the use of hypothesis-free techniques, like metabolomics, to measure molecular changes in AMD appealing. Indeed, there is increasing evidence that metabolic dysfunction has an important role in the development and progression of AMD. Therefore, metabolomics appears to be an appropriate platform to investigate disease-associated biomarkers. In this review, we explored what is known about metabolic changes in the retina, in conjunction with the emerging literature in AMD metabolomics research. Methods for metabolic biomarker identification in the eye have also been discussed, including the use of tears, vitreous, and aqueous humor, as well as imaging methods, like fluorescence lifetime imaging, that could be translated into a clinical diagnostic tool with molecular level resolution

    Ophthalmology

    Get PDF
    OBJECTIVE: In the current study we aimed to identify metabolites associated with age-related macular degeneration (AMD) by performing the largest metabolome association analysis in AMD to date. In addition, we aimed to determine the effect of AMD-associated genetic variants on metabolite levels, and aimed to investigate associations between the identified metabolites and activity of the complement system, one of the main AMD-associated disease pathways. DESIGN: Case-control assocation analysis of metabolomics data. SUBJECTS: 2,267 AMD cases and 4,266 controls from five European cohorts. METHODS: Metabolomics was performed using a high-throughput H-NMR metabolomics platform, which allows the quantification of 146 metabolite measurements and 79 derivative values. Metabolome-AMD associations were studied using univariate logistic regression analyses. The effect of 52 AMD-associated genetic variants on the identified metabolites was investigated using linear regression. In addition, associations between the identified metabolites and activity of the complement pathway (defined by the C3d/C3 ratio) were investigated using linear regression. MAIN OUTCOME MEASURES: Metabolites associated with AMD RESULTS: We identified 60 metabolites that were significantly associated with AMD, including increased levels of large and extra-large HDL subclasses and decreased levels of VLDL, amino acids and citrate. Out of 52 AMD-associated genetic variants, seven variants were significantly associated with 34 of the identified metabolites. The strongest associations were identified for genetic variants located in or near genes involved in lipid metabolism (ABCA1, CETP, APOE, LIPC) with metabolites belonging to the large and extra-large HDL subclasses. In addition, 57 out of 60 metabolites were significantly associated with complement activation levels, and these associations were independent of AMD status. Increased large and extra-large HDL levels and decreased VLDL and amino acid levels were associated with increased complement activation. CONCLUSIONS: Lipoprotein levels were associated with AMD-associated genetic variants, while decreased essential amino acids may point to nutritional deficiencies in AMD. We observed strong associations between the vast majority of the AMD-associated metabolites and systemic complement activation levels, independent of AMD status. This may indicate biological interactions between the main AMD disease pathways, and suggests that multiple pathways may need to be targeted simultaneously for successful treatment of AMD

    RETINAL HYPERREFLECTIVE FOCI IN TYPE 1 DIABETES MELLITUS

    No full text
    Contains fulltext : 222173.pdf (Publisher’s version ) (Open Access

    Generation of an iPSC line (SCTCi015-A) and isogenic control line (SCTCi015-A-1) from an age-related macular degeneration patient carrying the variant c.355G>A in the CFI gene

    No full text
    Age-related macular degeneration (AMD) is a common eye disease among the elderly in the Western world. AMD is a multifactorial disease, with a strong association with genetic variation in the complement system. One of the AMD-associated variants is the c.355G>A (p.Gly119Arg) variant in complement factor I (CFI), a central regulator of complement activation. Here, we report the generation of an iPSC line and its isogenic wildtype control derived from peripheral blood mononuclear cells of a female AMD-affected individual carrying the heterozygous variant c.355G>A (p.Gly119Arg). This line can be utilized to study the effects of this variant in disease-specific cell types

    Generation of an iPSC line (SCTCi014-A) and isogenic control line (SCTCi014-A-1) from an age-related macular degeneration patient carrying the variant c.355G>A in the CFI gene

    No full text
    Age-related macular degeneration (AMD) is a common eye disease among the elderly in the Western world. AMD is a multifactorial disease, with a strong association with genetic variation in the complement system. One of the AMD-associated variants is the c.355G>A (p.Gly119Arg) variant in complement factor I (CFI), a central regulator of complement activation. Here, we report the generation of an iPSC line and its isogenic wildtype control derived from peripheral blood mononuclear cells of a male AMD-affected individual carrying the heterozygous variant c.355G>A (p.Gly119Arg). The line can be utilized to study the effects of this variant in disease-specific cell types
    corecore