266 research outputs found

    LPIN1 gene mutations: a major cause of severe rhabdomyolysis in early childhood.

    Get PDF
    International audienceAutosomal recessive LPIN1 mutations have been recently described as a novel cause of rhabdomyolysis in a few families. The purpose of the study was to evaluate the prevalence of LPIN1 mutations in patients exhibiting severe episodes of rhabdomyolysis in infancy. After exclusion of primary fatty acid oxidation disorders, LPIN1 coding sequence was determined in genomic DNA and cDNA. Among the 29 patients studied, 17 (59%) carried recessive nonsense or frameshift mutations, or a large scale intragenic deletion. In these 17 patients, episodes of rhabdomyolysis occurred at a mean age of 21 months. Secondary defect of mitochondrial fatty oxidation or respiratory chain was found in skeletal muscle of two patients. The intragenic deletion, c.2295-866_2410-30del, was identified in 8/17 patients (47%), all Caucasians, and occurred on the background of a common haplotype, suggesting a founder effect. This deleted human LPIN1 form was unable to complement ∆pah1 yeast for growth on glycerol, in contrast to normal LPIN1. Since more than 50% of our series harboured LPIN1 mutations, LPIN1 should be regarded as a major cause of severe myoglobinuria in early childhood. The high frequency of the intragenic LPIN1 deletion should provide a valuable criterion for fast diagnosis, prior to muscle biopsy

    Magnetic resonance imaging in the diagnosis of white matter signal abnormalities.

    Get PDF
    Background White matter abnormalities (WMAs) pose a diagnostic challenge when trying to establish etiologic diagnoses. During childhood and adult years, genetic disorders, metabolic disorders and acquired conditions are included in differential diagnoses. To assist clinicians and radiologists, a structured algorithm using cranial magnetic resonance imaging (MRI) has been recommended to aid in establishing working diagnoses that facilitate appropriate biochemical and genetic investigations. This retrospective pilot study investigated the validity and diagnostic utility of this algorithm when applied to white matter signal abnormalities (WMSAs) reported on imaging studies of patients seen in our clinics. Methods The MRI algorithm was applied to 31 patients selected from patients attending the neurometabolic/neurogenetic/metabolic/neurology clinics at a tertiary care hospital. These patients varied in age from 5 months to 79 years old, and were reported to have WMSAs on cranial MRI scans. Twenty-one patients had confirmed WMA diagnoses and 10 patients had non-specific WMA diagnoses (etiology unknown). Two radiologists, blinded to confirmed diagnoses, used clinical abstracts and the WMSAs present on patient MRI scans to classify possible WMA diagnoses utilizing the algorithm. Results The MRI algorithm displayed a sensitivity of 100%, a specificity of 30.0% and a positive predicted value of 74.1%. Cohen\u27s kappa statistic for inter-radiologist agreement was 0.733, suggesting good agreement between radiologists. Conclusions Although a high diagnostic utility was not observed, results suggest that this MRI algorithm has promise as a clinical tool for clinicians and radiologists. We discuss the benefits and limitations of this approach

    Should Metabolic Diseases Be Systematically Screened in Nonsyndromic Autism Spectrum Disorders?

    Get PDF
    Abstract Background: In the investigation of autism spectrum disorders (ASD), a genetic cause is found in approximately 10-20%. Among these cases, the prevalence of the rare inherited metabolic disorders (IMD) is unknown and poorly evaluated. An IMD responsible for ASD is usually identified by the associated clinical phenotype such as dysmorphic features, ataxia, microcephaly, epilepsy, and severe intellectual disability (ID). In rare cases, however, ASD may be considered as nonsyndromic at the onset of a related IMD

    Comparison of two techniques for the morphometry study on gilthead seabream (Sparus aurata) spermatozoa and evaluation of changes induced by cryopreservation

    Full text link
    [EN] The development of powerful software has made possible spermatozoa morphology studies. However, some problems have emerged in relation to protocol standardization to compare results from different laboratories. This study was carried out to compare two techniques commonly used (staining vs phase contrast technique) for the morphometry study of gilthead sea bream spermatozoa using an integrated sperm analysis system (ISAS). Spermatozoa morphometry values were significantly affected by the technique used, and phase contrast technique was found to be the more accurate method, showing lower coefficients of variation on spermatozoa morphometry parameters measurements. Moreover, it has been shown that cryopreservation process produces damage in gilthead sea bream spermatozoa, causing negative effects in sperm parameters as spermatozoa morphometry (a decrease in cell volume), motility (from 95 to 68% motile cells) and viability (from 95 to 87% of live cells), being the addition of freezing medium containing cryoprotectant (DMSO) an important factor that caused the morphometry changes. (C) 2012 Elsevier Inc. All rights reserved.This work was financed by the Spanish Ministry of Science and Innovation (MICINN; AGL2007-64040-C03-00, Project SELECTBREAM). V. Gallego and I. Mazzeo were supported by predoctoral scholarships financed by the Spanish MICINN and Generalitat Valenciana, respectively. D.S. Penaranda had a postdoctoral grant from UPV.Gallego Albiach, V.; Peñaranda, D.; Marco Jiménez, F.; Mazzeo, I.; Pérez Igualada, LM.; Asturiano Nemesio, JF. (2012). Comparison of two techniques for the morphometry study on gilthead seabream (Sparus aurata) spermatozoa and evaluation of changes induced by cryopreservation. Theriogenology. 77(6):1078-1087. https://doi.org/10.1016/j.theriogenology.2011.10.010S1078108777

    Nijmegen paediatric CDG rating scale: a novel tool to assess disease progression

    Get PDF
    Congenital disorders of glycosylation (CDG) are a group of clinically heterogeneous inborn errors of metabolism. At present, treatment is available for only one CDG, but potential treatments for the other CDG are on the horizon. It will be vitally important in clinical trials of such agents to have a clear understanding of both the natural history of CDG and the corresponding burden of disability suffered by patients. To date, no multicentre studies have attempted to document the natural history of CDG. This is in part due to the lack of a reliable assessment tool to score CDG’s diverse clinical spectrum. Based on our earlier experience evaluating disease progression in disorders of oxidative phosphorylation, we developed a practical and semi-quantitative rating scale for children with CDG. The Nijmegen Paediatric CDG Rating Scale (NPCRS) has been validated in 12 children, offering a tool to objectively monitor disease progression. We undertook a successful trial of the NPCRS with a collaboration of nine experienced physicians, using video records of physical and neurological examination of patients. The use of NPCRS can facilitate both longitudinal and natural history studies that will be essential for future interventions

    Breastfeeding Success among Infants with Phenylketonuria

    Get PDF
    Breast milk is the nutrition of choice for human infants (American Academy of Pediatrics, 2005; American Association of Family Physicians, 2008; Association of Women’s Health Obstetric and Neonatal Nurses, 2005; Canadian Paediatric Society, 2005; U.S. Preventive Services Task Force, 2008; World Health Organization, 2009). The literature on the benefits of breast milk and breastfeeding for infants and mothers has established multiple positive outcomes for infants (Hoddinott, Tappin, & Wright, 2008; Horta, Bahl, Martines, & Victora, 2007; Ip et al., 2007). Breast milk has advantages for infants that distinguish it from standard commercial infant formulas. These advantages include growth factors, hormones, immunological factors, and long-chain polyunsaturated fatty acids. For infants with phenylketonuria (PKU), breast milk has additional advantages over any standard commercial infant formula, such as a lower concentration of protein and a lower content of the amino acid, phenylalanine. Despite these benefits, some clinics encourage mothers of infants with PKU to breastfeed whereas others present breastfeeding as an unacceptable option. Although the possible risks and benefits of breastfeeding infants with PKU have been discussed, there is limited research and practice describing breastfeeding infants with PKU. As a result, breastfeeding infants with PKU is based more upon limited clinical experiences rather than upon evidence based practice that aims to apply the best scientific evidence gained from research to clinical decision making

    Dietary b-glucan (MacroGard®) enhances survival of first feeding turbot (Scophthalmus maximus) larvae by altering immunity, metabolism and microbiota

    Get PDF
    Reflecting the natural biology of mass spawning fish aquaculture production of fish larvae is often hampered by high and unpredictable mortality rates. The present study aimed to enhance larval performance and immunity via the oral administration of an immunomodulator, β-glucan (MacroGard®) in turbot (Scophthalmus maximus). Rotifers (Brachionus plicatilis) were incubated with or without yeast β-1,3/1,6-glucan in form of MacroGard® at a concentration of 0.5 g/L. Rotifers were fed to first feeding turbot larvae once a day. From day 13 dph onwards all tanks were additionally fed untreated Artemia sp. nauplii (1 nauplius ml/L). Daily mortality was monitored and larvae were sampled at 11 and 24 dph for expression of 30 genes, microbiota analysis, trypsin activity and size measurements. Along with the feeding of β-glucan daily mortality was significantly reduced by ca. 15% and an alteration of the larval microbiota was observed. At 11 dph gene expression of trypsin and chymotrypsin was elevated in the MacroGard® fed fish, which resulted in heightened tryptic enzyme activity. No effect on genes encoding antioxidative proteins was observed, whilst the immune response was clearly modulated by β-glucan. At 11 dph complement component c3 was elevated whilst cytokines, antimicrobial peptides, toll like receptor 3 and heat shock protein 70 were not affected. At the later time point (24 dph) an anti-inflammatory effect in form of a down-regulation of hsp 70, tnf-α and il-1β was observed. We conclude that the administration of MacroGard® induced an immunomodulatory response and could be used as an effective measure to increase survival in rearing of turbot

    Adenoviral-mediated correction of methylmalonyl-CoA mutase deficiency in murine fibroblasts and human hepatocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methylmalonic acidemia (MMA), a common organic aciduria, is caused by deficiency of the mitochondrial localized, 5'deoxyadenosylcobalamin dependent enzyme, methylmalonyl-CoA mutase (MUT). Liver transplantation in the absence of gross hepatic dysfunction provides supportive therapy and metabolic stability in severely affected patients, which invites the concept of using cell and gene delivery as future treatments for this condition.</p> <p>Methods</p> <p>To assess the effectiveness of gene delivery to restore the defective metabolism in this disorder, adenoviral correction experiments were performed using murine <it>Mut </it>embryonic fibroblasts and primary human methylmalonyl-CoA mutase deficient hepatocytes derived from a patient who harbored two early truncating mutations, E224X and R228X, in the <it>MUT </it>gene. Enzymatic and expression studies were used to assess the extent of functional correction.</p> <p>Results</p> <p>Primary hepatocytes, isolated from the native liver after removal subsequent to a combined liver-kidney transplantation procedure, or <it>Mut </it>murine fibroblasts were infected with a second generation recombinant adenoviral vector that expressed the murine methylmalonyl-CoA mutase as well as eGFP from distinct promoters. After transduction, [1-<sup>14</sup>C] propionate macromolecular incorporation studies and Western analysis demonstrated complete correction of the enzymatic defect in both cell types. Viral reconstitution of enzymatic expression in the human methylmalonyl-CoA mutase deficient hepatocytes exceeded that seen in fibroblasts or control hepatocytes.</p> <p>Conclusion</p> <p>These experiments provide proof of principle for viral correction in methylmalonic acidemia and suggest that hepatocyte-directed gene delivery will be an effective therapeutic treatment strategy in both murine models and in human patients. Primary hepatocytes from a liver that was unsuitable for transplantation provided an important resource for these studies.</p

    The Compartmentalisation of Phosphorylated Free Oligosaccharides in Cells from a CDG Ig Patient Reveals a Novel ER-to-Cytosol Translocation Process

    Get PDF
    BACKGROUND: Biosynthesis of the dolichol linked oligosaccharide (DLO) required for protein N-glycosylation starts on the cytoplasmic face of the ER to give Man(5)GlcNAc(2)-PP-dolichol, which then flips into the ER for further glycosylation yielding mature DLO (Glc(3)Man(9)GlcNAc(2)-PP-dolichol). After transfer of Glc(3)Man(9)GlcNAc(2) onto protein, dolichol-PP is recycled to dolichol-P and reused for DLO biosynthesis. Because de novo dolichol synthesis is slow, dolichol recycling is rate limiting for protein glycosylation. Immature DLO intermediates may also be recycled by pyrophosphatase-mediated cleavage to yield dolichol-P and phosphorylated oligosaccharides (fOSGN2-P). Here, we examine fOSGN2-P generation in cells from patients with type I Congenital Disorders of Glycosylation (CDG I) in which defects in the dolichol cycle cause accumulation of immature DLO intermediates and protein hypoglycosylation. METHODS AND PRINCIPAL FINDINGS: In EBV-transformed lymphoblastoid cells from CDG I patients and normal subjects a correlation exists between the quantities of metabolically radiolabeled fOSGN2-P and truncated DLO intermediates only when these two classes of compounds possess 7 or less hexose residues. Larger fOSGN2-P were difficult to detect despite an abundance of more fully mannosylated and glucosylated DLO. When CDG Ig cells, which accumulate Man(7)GlcNAc(2)-PP-dolichol, are permeabilised so that vesicular transport and protein synthesis are abolished, the DLO pool required for Man(7)GlcNAc(2)-P generation could be depleted by adding exogenous glycosylation acceptor peptide. Under conditions where a glycotripeptide and neutral free oligosaccharides remain predominantly in the lumen of the ER, Man(7)GlcNAc(2)-P appears in the cytosol without detectable generation of ER luminal Man(7)GlcNAc(2)-P. CONCLUSIONS AND SIGNIFICANCE: The DLO pools required for N-glycosylation and fOSGN2-P generation are functionally linked and this substantiates the hypothesis that pyrophosphatase-mediated cleavage of DLO intermediates yields recyclable dolichol-P. The kinetics of cytosolic fOSGN2-P generation from a luminally-generated DLO intermediate demonstrate the presence of a previously undetected ER-to-cytosol translocation process for either fOSGN2-P or DLO

    Metabolic phenotype of methylmalonic acidemia in mice and humans: the role of skeletal muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in methylmalonyl-CoA mutase cause methylmalonic acidemia, a common organic aciduria. Current treatment regimens rely on dietary management and, in severely affected patients, liver or combined liver-kidney transplantation. For undetermined reasons, transplantation does not correct the biochemical phenotype.</p> <p>Methods</p> <p>To study the metabolic disturbances seen in this disorder, we have created a murine model with a null allele at the methylmalonyl-CoA mutase locus and correlated the results observed in the knock-out mice to patient data. To gain insight into the origin and magnitude of methylmalonic acid (MMA) production in humans with methylmalonyl-CoA mutase deficiency, we evaluated two methylmalonic acidemia patients who had received different variants of combined liver-kidney transplants, one with a complete liver replacement-kidney transplant and the other with an auxiliary liver graft-kidney transplant, and compared their metabolite production to four untransplanted patients with intact renal function.</p> <p>Results</p> <p>Enzymatic, Western and Northern analyses demonstrated that the targeted allele was null and correctable by lentiviral complementation. Metabolite studies defined the magnitude and tempo of plasma MMA concentrations in the mice. Before a fatal metabolic crisis developed in the first 24–48 hours, the methylmalonic acid content per gram wet-weight was massively elevated in the skeletal muscle as well as the kidneys, liver and brain. Near the end of life, extreme elevations in tissue MMA were present primarily in the liver. The transplant patients studied when well and on dietary therapy, displayed massive elevations of MMA in the plasma and urine, comparable to the levels seen in the untransplanted patients with similar enzymatic phenotypes and dietary regimens.</p> <p>Conclusion</p> <p>The combined observations from the murine metabolite studies and patient investigations indicate that during homeostasis, a large portion of circulating MMA has an extra-heptorenal origin and likely derives from the skeletal muscle. Our studies suggest that modulating skeletal muscle metabolism may represent a strategy to increase metabolic capacity in methylmalonic acidemia as well as other organic acidurias. This mouse model will be useful for further investigations exploring disease mechanisms and therapeutic interventions in methylmalonic acidemia, a devastating disorder of intermediary metabolism.</p
    • …
    corecore