15,292 research outputs found
A generalization of the Entropy Power Inequality to Bosonic Quantum Systems
In most communication schemes information is transmitted via travelling modes
of electromagnetic radiation. These modes are unavoidably subject to
environmental noise along any physical transmission medium and the quality of
the communication channel strongly depends on the minimum noise achievable at
the output. For classical signals such noise can be rigorously quantified in
terms of the associated Shannon entropy and it is subject to a fundamental
lower bound called entropy power inequality. Electromagnetic fields are however
quantum mechanical systems and then, especially in low intensity signals, the
quantum nature of the information carrier cannot be neglected and many
important results derived within classical information theory require
non-trivial extensions to the quantum regime. Here we prove one possible
generalization of the Entropy Power Inequality to quantum bosonic systems. The
impact of this inequality in quantum information theory is potentially large
and some relevant implications are considered in this work
Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission
BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model.
METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model.
RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva.
CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination
Glauber theory of initial- and final-state interactions in (p,2p) scattering
We develop the Glauber theory description of initial- and final-state
interactions (IFSI) in quasielastic A(p,2p) scattering. We study the
IFSI-distortion effects both for the inclusive and exclusive conditions. In
inclusive reaction the important new effect is an interaction between the two
sets of the trajectories which enter the calculation of IFSI-distorted one-body
density matrix for inclusive (p,2p) scattering and are connected with
incoherent elastic rescatterings of the initial and final protons on spectator
nucleons. We demonstrate that IFSI-distortions of the missing momentum
distribution are large over the whole range of missing momentum both for
inclusive and exclusive reactions and affect in a crucial way the
interpretation of the BNL data on (p,2p) scattering. Our numerical results show
that in the region of missing momentum p_{m}\lsim 100-150 MeV/c the
incoherent IFSI increase nuclear transparency by 5-10\%. The incoherent IFSI
become dominant at p_{m}\gsim 200 MeV/c.Comment: Accepted in Z. Phys.A, Latex, 26 pages, uuencoded 9 figure
Time for T? Immunoinformatics addresses the challenges of vaccine design for neglected tropical and emerging infectious diseases
Vaccines have been invaluable for global health, saving lives and reducing healthcare costs, while also raising the quality of human life. However, newly emerging infectious diseases (EID) and more well-established tropical disease pathogens present complex challenges to vaccine developers; in particular, neglected tropical diseases, which are most prevalent among the world’s poorest, include many pathogens with large sizes, multistage life cycles and a variety of nonhuman vectors. EID such as MERS-CoV and H7N9 are highly pathogenic for humans. For many of these pathogens, while their genomes are available, immune correlates of protection are currently unknown. These complexities make developing vaccines for EID and neglected tropical diseases all the more difficult. In this review, we describe the implementation of an immunoinformatics-driven approach to systematically search for key determinants of immunity in newly available genome sequence data and design vaccines. This approach holds promise for the development of 21st century vaccines, improving human health everywhere
Quantitative trait loci for bone traits segregating independently of those for growth in an F-2 broiler X layer cross
An F broiler-layer cross was phenotyped for 18 skeletal traits at 6, 7 and 9 weeks of age and genotyped with 120 microsatellite markers. Interval mapping identified 61 suggestive and significant QTL on 16 of the 25 linkage groups for 16 traits. Thirty-six additional QTL were identified when the assumption that QTL were fixed in the grandparent lines was relaxed. QTL with large effects on the lengths of the tarsometatarsus, tibia and femur, and the weights of the tibia and femur were identified on GGA4 between 217 and 249 cM. Six QTL for skeletal traits were identified that did not co-locate with genome wide significant QTL for body weight and two body weight QTL did not coincide with skeletal trait QTL. Significant evidence of imprinting was found in ten of the QTL and QTL x sex interactions were identified for 22 traits. Six alleles from the broiler line for weight- and size-related skeletal QTL were positive. Negative alleles for bone quality traits such as tibial dyschondroplasia, leg bowing and tibia twisting generally originated from the layer line suggesting that the allele inherited from the broiler is more protective than the allele originating from the layer
Proposal to produce long-lived mesoscopic superpositions through an atom-driven field interaction
We present a proposal for the production of longer-lived mesoscopic
superpositions which relies on two requirements: parametric amplification and
squeezed vacuum reservoir for cavity-field states. Our proposal involves the
interaction of a two-level atom with a cavity field which is simultaneously
subjected to amplification processes.Comment: 12 pages, title changed, text improved and refences adde
The Vicinity of the Galactic Supergiant B[e] Star CPD-57\deg2874 from Near- and Mid-IR Long Baseline Spectro-Interferometry with the VLTI (AMBER and MIDI)
This is the author accepted manuscript. The final version is available from ASP via the link in this record.We present the first spectro-interferometric observations of the circumstellar envelope (CSE) of a B[e] supergiant (CPD−57°2874), performed with the Very Large Telescope Interferometer (VLTI) using the beam-combiner instruments AMBER (near-IR interferometry with three 8.3 m Unit Telescopes or UTs) and MIDI (mid-IR interferometry with two UTs). Our observations of the CSE are well fitted by an elliptical Gaussian model with FWHM diameters varying linearly with wavelength. Typical diameters measured are ≅ 1.8 × 3.4 mas or ≅ 4.5×8.5 AU (adopting a distance of 2.5 kpc) at 2.2 μm, and ≅ 12×15 mas or ≅ 30 × 38 AU at 12 μm. We show that a spherical dust model reproduces the SED but it underestimates the MIDI visibilities, suggesting that a dense equatorial disk is required to account for the compact dust-emitting region observed. Moreover, the derived major-axis position angle in the mid-IR (≅ 144°) agrees well with previous polarimetric data, hinting that the hot-dust emission originates in a disk-like structure. Our results support the non-spherical CSE paradigm for B[e] supergiants
Syphilis infection is associated with an increase in plasma viral load in HIV infected patients: results from the FHDH cohort — ANRS CO4
International audiencen.
- …