6 research outputs found

    Metastatic neuroblastoma in infants: are survival rates excellent only within the stringent framework of clinical trials?

    No full text
    Introduction: SIOPEN INES protocol yielded excellent 5-year survival rates for MYCN-non-amplified metastatic\uc2\ua0neuroblastoma. Patients deemed ineligible due to lack or delay of MYCN status or late registration were treated, but not included in the study. Our goal was to analyse survival at 10\uc2\ua0years among the whole population. Materials and methods: Italian and Spanish metastatic INES patients\ue2\u80\u99 data are reported. SPSS 20.0 was used for statistical analysis. Results: Among 98 infants, 27 had events and 19 died, while 79 were disease free. Five- and 10-year event-free survival (EFS) were 73 and 70\uc2\ua0%, and overall survival (OS) was 81 and 74\uc2\ua0%, respectively. MYCN status was significant for EFS, but not for OS in multivariate analysis. Conclusions: The survival rates of patients who complied with all the inclusion criteria for INES trials are higher compared to those that included also not registered patients. Five-year EFS and OS for INES 99.2 were 87.8 and 95.7\uc2\ua0%, while our stage 4s population obtained 78 and 87\uc2\ua0%. Concerning 99.3, 5-year EFS and OS were 86.7 and 95.6\uc2\ua0%, while for stage 4 we registered 61 and 68\uc2\ua0%. MYCN amplification had a strong impact on prognosis and therefore we consider it unacceptable that many patients were not studied for MYCN and probably inadequately treated. Ten-year survival rates were shown to decrease: EFS from 73 to 70\uc2\ua0% and OS from 81 to 74\uc2\ua0%, indicating a risk of late events, particularly in stage 4s. Population-based registries like European ENCCA WP 11-task 11 will possibly clarify these data

    Epigenetic footprint enables molecular risk stratification of hepatoblastoma with clinical implications

    Get PDF
    Background & aims: Hepatoblastoma (HB) is a rare disease. Nevertheless, it is the predominant pediatric liver cancer, with limited therapeutic options for patients with aggressive tumors. Herein, we aimed to uncover the mechanisms of HB pathobiology and to identify new biomarkers and therapeutic targets in a move towards precision medicine for patients with advanced HB. Methods: We performed a comprehensive genomic, transcriptomic and epigenomic characterization of 159 clinically annotated samples from 113 patients with HB, using high-throughput technologies. Results: We discovered a widespread epigenetic footprint of HB that includes hyperediting of the tumor suppressor BLCAP concomitant with a genome-wide dysregulation of RNA editing and the overexpression of mainly non-coding genes of the oncogenic 14q32 DLK1-DIO3 locus. By unsupervised analysis, we identified 2 epigenomic clusters (Epi-CA, Epi-CB) with distinct degrees of DNA hypomethylation and CpG island hypermethylation that are associated with the C1/C2/C2B transcriptomic subtypes. Based on these findings, we defined the first molecular risk stratification of HB (MRS-HB), which encompasses 3 main prognostic categories and improves the current clinical risk stratification approach. The MRS-3 category (28%), defined by strong 14q32 locus expression and Epi-CB methylation features, was characterized by CTNNB1 and NFE2L2 mutations, a progenitor-like phenotype and clinical aggressiveness. Finally, we identified choline kinase alpha as a promising therapeutic target for intermediate and high-risk HBs, as its inhibition in HB cell lines and patient-derived xenografts strongly abrogated tumor growth. Conclusions: These findings provide a detailed insight into the molecular features of HB and could be used to improve current clinical stratification approaches and to develop treatments for patients with HB. Lay summary: Hepatoblastoma is a rare childhood liver cancer that has been understudied. We have used cutting-edge technologies to expand our molecular knowledge of this cancer. Our biological findings can be used to improve clinical management and pave the way for the development of novel therapies for this cancer

    Epigenetic footprint enables molecular risk stratification of hepatoblastoma with clinical implications

    No full text
    Background & Aims: Hepatoblastoma (HB) is a rare disease. Nevertheless, it is the predominant pediatric liver cancer, with limited therapeutic options for patients with aggressive tumors. Herein, we aimed to uncover the mechanisms of HB pathobiology and to identify new biomarkers and therapeutic targets in a move towards precision medicine for patients with advanced HB. Methods: We performed a comprehensive genomic, transcriptomic and epigenomic characterization of 159 clinically annotated samples from 113 patients with HB, using high-throughput technologies. Results: We discovered a widespread epigenetic footprint of HB that includes hyperediting of the tumor suppressor BLCAP concomitant with a genome-wide dysregulation of RNA editing and the overexpression of mainly non-coding genes of the oncogenic 14q32 DLK1-DIO3 locus. By unsupervised analysis, we identified 2 epigenomic clusters (Epi-CA, Epi-CB) with distinct degrees of DNA hypomethylation and CpG island hypermethylation that are associated with the C1/C2/C2B transcriptomic subtypes. Based on these findings, we defined the first molecular risk stratification of HB (MRS-HB), which encompasses 3 main prognostic categories and improves the current clinical risk stratification approach. The MRS-3 category (28%), defined by strong 14q32 locus expression and Epi-CB methylation features, was characterized by CTNNB1 and NFE2L2 mutations, a progenitor-like phenotype and clinical aggressiveness. Finally, we identified choline kinase alpha as a promising therapeutic target for intermediate and high-risk HBs, as its inhibition in HB cell lines and patient-derived xenografts strongly abrogated tumor growth. Conclusions: These findings provide a detailed insight into the molecular features of HB and could be used to improve current clinical stratification approaches and to develop treatments for patients with HB. Lay summary: Hepatoblastoma is a rare childhood liver cancer that has been understudied. We have used cutting-edge technologies to expand our molecular knowledge of this cancer. Our biological findings can be used to improve clinical management and pave the way for the development of novel therapies for this cancer

    Long-term safety and efficacy of eculizumab in generalized myasthenia gravis

    No full text
    Introduction: Eculizumab is effective and well tolerated in patients with antiacetylcholine receptor antibody-positive refractory generalized myasthenia gravis (gMG; REGAIN; NCT01997229). We report an interim analysis of an open-label extension of REGAIN, evaluating eculizumab's long-term safety and efficacy. Methods: Eculizumab (1,200 mg every 2 weeks for 22.7 months [median]) was administered to 117 patients. Results: The safety profile of eculizumab was consistent with REGAIN; no cases of meningococcal infection were reported during the interim analysis period. Myasthenia gravis exacerbation rate was reduced by 75% from the year before REGAIN (P < 0.0001). Improvements with eculizumab in activities of daily living, muscle strength, functional ability, and quality of life in REGAIN were maintained through 3 years; 56% of patients achieved minimal manifestations or pharmacological remission. Patients who had received placebo during REGAIN experienced rapid and sustained improvements during open-label eculizumab (P < 0.0001). Discussion: These findings provide evidence for the long-term safety and sustained efficacy of eculizumab for refractory gMG. Muscle Nerve 2019
    corecore