1,697 research outputs found

    Improving Lattice Quark Actions

    Get PDF
    We explore the first stage of the Symanzik improvement program for lattice Dirac fermions, namely the construction of doubler-free, highly improved classical actions on isotropic as well as anisotropic lattices (where the temporal lattice spacing, a_t, is smaller than the spatial one). Using field transformations to eliminate doublers, we derive the previously presented isotropic D234 action with O(a^3) errors, as well as anisotropic D234 actions with O(a^4) or O(a_t^3, a^4) errors. Besides allowing the simulation of heavy quarks within a relativistic framework, anisotropic lattices alleviate potential problems due to unphysical branches of the quark dispersion relation (which are generic to improved actions), facilitate studies of lattice thermodynamics, and allow accurate mass determinations for particles with bad signal/noise properties, like glueballs and P-state mesons. We also show how field transformations can be used to completely eliminate unphysical branches of the dispersion relation. Finally, we briefly discuss future steps in the improvement program.Comment: Tiny changes to agree with version to appear in Nucl. Phys. B (33 pages, LaTeX, 13 eps files

    Review Article: Potential geomorphic consequences of a future great (Mw = 8.0+) Alpine Fault earthquake, South Island, New Zealand

    Get PDF
    The Alpine Fault in New Zealand's South Island has not sustained a large magnitude earthquake since ca. AD 1717. The time since this rupture is close to the average inferred recurrence interval of the fault (~300 yr). The Alpine Fault is therefore expected to generate a large magnitude earthquake in the near future. Previous ruptures of this fault are inferred to have generated Mw = 8.0 or greater earthquakes and to have resulted in, amongst other geomorphic hazards, large-scale landslides and landslide dams throughout the Southern Alps. There is currently 85% probability that the Alpine Fault will cause a Mw = 8.0+ earthquake within the next 100 yr. While the seismic hazard is fairly well understood, that of the consequential geomorphic activity is less well studied, and these consequences are explored herein. They are expected to include landsliding, landslide damming, dam-break flooding, debris flows, river aggradation, liquefaction, and landslide-generated lake/fiord tsunami. Using evidence from previous events within New Zealand as well as analogous international examples, we develop first-order estimates of the likely magnitude and possible locations of the geomorphic effects associated with earthquakes. Landsliding is expected to affect an area > 30 000 km2 and involve > 1billion m3 of material. Some tens of landslide dams are expected to occur in narrow, steep-sided gorges in the affected region. Debris flows will be generated in the first long-duration rainfall after the earthquake and will continue to occur for several years as rainfall (re)mobilises landslide material. In total more than 1000 debris flows are likely to be generated at some time after the earthquake. Aggradation of up to 3 m will cover an area > 125 km2 and is likely to occur on many West Coast alluvial fans and floodplains. The impact of these effects will be felt across the entire South Island and is likely to continue for several decades

    The UKIRT infrared deep sky survey early data release

    Get PDF
    This paper defines the UKIRT Infrared Deep Sky Survey (UKIDSS) Early Data Release (EDR). UKIDSS is a set of five large near-infrared surveys being undertaken with the United Kingdom Infrared Telescope Wide Field Camera (WFCAM). The programme began in 2005 May and has an expected duration of 7 yr. Each survey uses some or all of the broad-band filter complement ZY JHK. The EDR is the first public release of data to the European Southern Observatory (ESO) community. All worldwide releases occur after a delay of 18 months from the ESO release. The EDR provides a small sample data set, ∼50 deg2 (about 1 per cent of the whole of UKIDSS), that is a lower limit to the expected quality of future survey data releases. In addition, an EDR+ data set contains all EDR data plus extra data of similar quality, but for areas not observed in all of the required filters (amounting to ∼220 deg2). The first large data release, DR1, will occur in mid-2006. We provide details of the observational implementation, the data reduction, the astrometric and photometric calibration and the quality control procedures. We summarize the data coverage and quality (seeing, ellipticity, photometricity, depth) for each survey and give a brief guide to accessing the images and catalogues from the WFCAM Science Archive

    Charmonium Spectrum from Quenched Anisotropic Lattice QCD

    Get PDF
    We present a detailed study of the charmonium spectrum using anisotropic lattice QCD. We first derive a tree-level improved clover quark action on the anisotropic lattice for arbitrary quark mass. The heavy quark mass dependences of the improvement coefficients, i.e. the ratio of the hopping parameters ζ=Kt/Ks\zeta=K_t/K_s and the clover coefficients cs,tc_{s,t}, are examined at the tree level. We then compute the charmonium spectrum in the quenched approximation employing ξ=as/at=3\xi = a_s/a_t = 3 anisotropic lattices. Simulations are made with the standard anisotropic gauge action and the anisotropic clover quark action at four lattice spacings in the range asa_s=0.07-0.2 fm. The clover coefficients cs,tc_{s,t} are estimated from tree-level tadpole improvement. On the other hand, for the ratio of the hopping parameters ζ\zeta, we adopt both the tree-level tadpole-improved value and a non-perturbative one. We calculate the spectrum of S- and P-states and their excitations. The results largely depend on the scale input even in the continuum limit, showing a quenching effect. When the lattice spacing is determined from the 1P1S1P-1S splitting, the deviation from the experimental value is estimated to be \sim30% for the S-state hyperfine splitting and \sim20% for the P-state fine structure. Our results are consistent with previous results at ξ=2\xi = 2 obtained by Chen when the lattice spacing is determined from the Sommer scale r0r_0. We also address the problem with the hyperfine splitting that different choices of the clover coefficients lead to disagreeing results in the continuum limit.Comment: 43 pages, 49 eps figures, revtex; minor changes, version to appear in Physical Review

    Adjoint "quarks" on coarse anisotropic lattices: Implications for string breaking in full QCD

    Get PDF
    A detailed study is made of four dimensional SU(2) gauge theory with static adjoint ``quarks'' in the context of string breaking. A tadpole-improved action is used to do simulations on lattices with coarse spatial spacings asa_s, allowing the static potential to be probed at large separations at a dramatically reduced computational cost. Highly anisotropic lattices are used, with fine temporal spacings ata_t, in order to assess the behavior of the time-dependent effective potentials. The lattice spacings are determined from the potentials for quarks in the fundamental representation. Simulations of the Wilson loop in the adjoint representation are done, and the energies of magnetic and electric ``gluelumps'' (adjoint quark-gluon bound states) are calculated, which set the energy scale for string breaking. Correlators of gauge-fixed static quark propagators, without a connecting string of spatial links, are analyzed. Correlation functions of gluelump pairs are also considered; similar correlators have recently been proposed for observing string breaking in full QCD and other models. A thorough discussion of the relevance of Wilson loops over other operators for studies of string breaking is presented, using the simulation results presented here to support a number of new arguments.Comment: 22 pages, 14 figure

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd

    Scale setting for alpha_s beyond leading order

    Full text link
    We present a general procedure for incorporating higher-order information into the scale-setting prescription of Brodsky, Lepage and Mackenzie. In particular, we show how to apply this prescription when the leading coefficient or coefficients in a series in the strong coupling alpha_s are anomalously small and the original prescription can give an unphysical scale. We give a general method for computing an optimum scale numerically, within dimensional regularization, and in cases when the coefficients of a series are known. We apply it to the heavy quark mass and energy renormalization in lattice NRQCD, and to a variety of known series. Among the latter, we find significant corrections to the scales for the ratio of e+e- to hadrons over muons, the ratio of the quark pole to MSbar mass, the semi-leptonic B-meson decay width, and the top decay width. Scales for the latter two decay widths, expressed in terms of MSbar masses, increase by factors of five and thirteen, respectively, substantially reducing the size of radiative corrections.Comment: 39 pages, 15 figures, 5 tables, LaTeX2
    corecore