1,697 research outputs found
Improving Lattice Quark Actions
We explore the first stage of the Symanzik improvement program for lattice
Dirac fermions, namely the construction of doubler-free, highly improved
classical actions on isotropic as well as anisotropic lattices (where the
temporal lattice spacing, a_t, is smaller than the spatial one). Using field
transformations to eliminate doublers, we derive the previously presented
isotropic D234 action with O(a^3) errors, as well as anisotropic D234 actions
with O(a^4) or O(a_t^3, a^4) errors. Besides allowing the simulation of heavy
quarks within a relativistic framework, anisotropic lattices alleviate
potential problems due to unphysical branches of the quark dispersion relation
(which are generic to improved actions), facilitate studies of lattice
thermodynamics, and allow accurate mass determinations for particles with bad
signal/noise properties, like glueballs and P-state mesons. We also show how
field transformations can be used to completely eliminate unphysical branches
of the dispersion relation. Finally, we briefly discuss future steps in the
improvement program.Comment: Tiny changes to agree with version to appear in Nucl. Phys. B (33
pages, LaTeX, 13 eps files
Review Article: Potential geomorphic consequences of a future great (Mw = 8.0+) Alpine Fault earthquake, South Island, New Zealand
The Alpine Fault in New Zealand's South Island has not sustained a large magnitude earthquake since ca. AD 1717. The time since this rupture is close to the average inferred recurrence interval of the fault (~300 yr). The Alpine Fault is therefore expected to generate a large magnitude earthquake in the near future. Previous ruptures of this fault are inferred to have generated Mw = 8.0 or greater earthquakes and to have resulted in, amongst other geomorphic hazards, large-scale landslides and landslide dams throughout the Southern Alps. There is currently 85% probability that the Alpine Fault will cause a Mw = 8.0+ earthquake within the next 100 yr. While the seismic hazard is fairly well understood, that of the consequential geomorphic activity is less well studied, and these consequences are explored herein. They are expected to include landsliding, landslide damming, dam-break flooding, debris flows, river aggradation, liquefaction, and landslide-generated lake/fiord tsunami. Using evidence from previous events within New Zealand as well as analogous international examples, we develop first-order estimates of the likely magnitude and possible locations of the geomorphic effects associated with earthquakes. Landsliding is expected to affect an area > 30 000 km2 and involve > 1billion m3 of material. Some tens of landslide dams are expected to occur in narrow, steep-sided gorges in the affected region. Debris flows will be generated in the first long-duration rainfall after the earthquake and will continue to occur for several years as rainfall (re)mobilises landslide material. In total more than 1000 debris flows are likely to be generated at some time after the earthquake. Aggradation of up to 3 m will cover an area > 125 km2 and is likely to occur on many West Coast alluvial fans and floodplains. The impact of these effects will be felt across the entire South Island and is likely to continue for several decades
The UKIRT infrared deep sky survey early data release
This paper defines the UKIRT Infrared Deep Sky Survey (UKIDSS) Early Data Release (EDR). UKIDSS is a set of five large near-infrared surveys being undertaken with the United Kingdom Infrared Telescope Wide Field Camera (WFCAM). The programme began in 2005 May and has an expected duration of 7 yr. Each survey uses some or all of the broad-band filter complement ZY JHK. The EDR is the first public release of data to the European Southern Observatory (ESO) community. All worldwide releases occur after a delay of 18 months from the ESO release. The EDR provides a small sample data set, ∼50 deg2 (about 1 per cent of the whole of UKIDSS), that is a lower limit to the expected quality of future survey data releases. In addition, an EDR+ data set contains all EDR data plus extra data of similar quality, but for areas not observed in all of the required filters (amounting to ∼220 deg2). The first large data release, DR1, will occur in mid-2006. We provide details of the observational implementation, the data reduction, the astrometric and photometric calibration and the quality control procedures. We summarize the data coverage and quality (seeing, ellipticity, photometricity, depth) for each survey and give a brief guide to accessing the images and catalogues from the WFCAM Science Archive
Charmonium Spectrum from Quenched Anisotropic Lattice QCD
We present a detailed study of the charmonium spectrum using anisotropic
lattice QCD. We first derive a tree-level improved clover quark action on the
anisotropic lattice for arbitrary quark mass. The heavy quark mass dependences
of the improvement coefficients, i.e. the ratio of the hopping parameters
and the clover coefficients , are examined at the tree
level. We then compute the charmonium spectrum in the quenched approximation
employing anisotropic lattices. Simulations are made with
the standard anisotropic gauge action and the anisotropic clover quark action
at four lattice spacings in the range =0.07-0.2 fm. The clover
coefficients are estimated from tree-level tadpole improvement. On
the other hand, for the ratio of the hopping parameters , we adopt both
the tree-level tadpole-improved value and a non-perturbative one. We calculate
the spectrum of S- and P-states and their excitations. The results largely
depend on the scale input even in the continuum limit, showing a quenching
effect. When the lattice spacing is determined from the splitting, the
deviation from the experimental value is estimated to be 30% for the
S-state hyperfine splitting and 20% for the P-state fine structure. Our
results are consistent with previous results at obtained by Chen when
the lattice spacing is determined from the Sommer scale . We also address
the problem with the hyperfine splitting that different choices of the clover
coefficients lead to disagreeing results in the continuum limit.Comment: 43 pages, 49 eps figures, revtex; minor changes, version to appear in
Physical Review
Adjoint "quarks" on coarse anisotropic lattices: Implications for string breaking in full QCD
A detailed study is made of four dimensional SU(2) gauge theory with static
adjoint ``quarks'' in the context of string breaking. A tadpole-improved action
is used to do simulations on lattices with coarse spatial spacings ,
allowing the static potential to be probed at large separations at a
dramatically reduced computational cost. Highly anisotropic lattices are used,
with fine temporal spacings , in order to assess the behavior of the
time-dependent effective potentials. The lattice spacings are determined from
the potentials for quarks in the fundamental representation. Simulations of the
Wilson loop in the adjoint representation are done, and the energies of
magnetic and electric ``gluelumps'' (adjoint quark-gluon bound states) are
calculated, which set the energy scale for string breaking. Correlators of
gauge-fixed static quark propagators, without a connecting string of spatial
links, are analyzed. Correlation functions of gluelump pairs are also
considered; similar correlators have recently been proposed for observing
string breaking in full QCD and other models. A thorough discussion of the
relevance of Wilson loops over other operators for studies of string breaking
is presented, using the simulation results presented here to support a number
of new arguments.Comment: 22 pages, 14 figure
An estimate of the flavour singlet contributions to the hyperfine splitting in charmonium
We explore the splitting between flavour singlet and non-singlet mesons in
charmonium. This has implications for the hyperfine splitting in charmonium
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
Scale setting for alpha_s beyond leading order
We present a general procedure for incorporating higher-order information
into the scale-setting prescription of Brodsky, Lepage and Mackenzie. In
particular, we show how to apply this prescription when the leading coefficient
or coefficients in a series in the strong coupling alpha_s are anomalously
small and the original prescription can give an unphysical scale. We give a
general method for computing an optimum scale numerically, within dimensional
regularization, and in cases when the coefficients of a series are known. We
apply it to the heavy quark mass and energy renormalization in lattice NRQCD,
and to a variety of known series. Among the latter, we find significant
corrections to the scales for the ratio of e+e- to hadrons over muons, the
ratio of the quark pole to MSbar mass, the semi-leptonic B-meson decay width,
and the top decay width. Scales for the latter two decay widths, expressed in
terms of MSbar masses, increase by factors of five and thirteen, respectively,
substantially reducing the size of radiative corrections.Comment: 39 pages, 15 figures, 5 tables, LaTeX2
- …
