40 research outputs found
Recommended from our members
Universal slow plasmons and giant field enhancement in atomically thin quasi-two-dimensional metals
Plasmons depend strongly on dimensionality: while plasmons in three-dimensional systems start with finite energy at wavevector q = 0, plasmons in traditional two-dimensional (2D) electron gas disperse as ωp∼q√. However, besides graphene, plasmons in real, atomically thin quasi-2D materials were heretofore not well understood. Here we show that the plasmons in real quasi-2D metals are qualitatively different, being virtually dispersionless for wavevectors of typical experimental interest. This stems from a broken continuous translational symmetry which leads to interband screening; so, dispersionless plasmons are a universal intrinsic phenomenon in quasi-2D metals. Moreover, our ab initio calculations reveal that plasmons of monolayer metallic transition metal dichalcogenides are tunable, long lived, able to sustain field intensity enhancement exceeding 107, and localizable in real space (within ~20 nm) with little spreading over practical measurement time. This opens the possibility of tracking plasmon wave packets in real time for novel imaging techniques in atomically thin materials
Hardness and elasticity in cubic ruthenium dioxide
The Knoop hardness of the highly incompressible cubic phase of ruthenium dioxide was found to be 19–20 GPa from indentation tests. This value scales well with the shear modulus approximated by the elastic constant C44 of 144 GPa obtained from Brillouin scattering measurements. This work provides evidence that the shear modulus is a better indicator of hardness than the bulk modulus for ionic and covalent materials
Probing the Role of Interlayer Coupling and Coulomb Interactions on Electronic Structure in Few-Layer MoSe2 Nanostructures
Despite the weak nature of interlayer forces in transition metal
dichalcogenide (TMD) materials, their properties are highly dependent on the
number of layers in the few-layer two-dimensional (2D) limit. Here, we present
a combined scanning tunneling microscopy/spectroscopy and GW theoretical study
of the electronic structure of high quality single- and few-layer MoSe2 grown
on bilayer graphene. We find that the electronic (quasiparticle) bandgap, a
fundamental parameter for transport and optical phenomena, decreases by nearly
one electronvolt when going from one layer to three due to interlayer coupling
and screening effects. Our results paint a clear picture of the evolution of
the electronic wave function hybridization in the valleys of both the valence
and conduction bands as the number of layers is changed. This demonstrates the
importance of layer number and electron-electron interactions on van der Waals
heterostructures, and helps to clarify how their electronic properties might be
tuned in future 2D nanodevices
The 2021 ultrafast spectroscopic probes of condensed matter roadmap
In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light–matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends
Experimental measurement of the intrinsic excitonic wave function
An exciton, a two-body composite quasiparticle formed of an electron and hole, is a fundamental optical excitation in condensed matter systems. Since its discovery nearly a century ago, a measurement of the excitonic wave function has remained beyond experimental reach. Here, we directly image the excitonic wave function in reciprocal space by measuring the momentum distribution of electrons photoemitted from excitons in monolayer tungsten diselenide. By transforming to real space, we obtain a visual of the distribution of the electron around the hole in an exciton. Further, by also resolving the energy coordinate, we confirm the elusive theoretical prediction that the photoemitted electron exhibits an inverted energy-momentum dispersion relationship reflecting the valence band where the partner hole remains, rather than that of conduction band states of the electron