161 research outputs found

    Formation of a quasicrystalline Pb monolayer on the ten-fold surface of the decagonal Al-Ni-Co quasicrystal

    Full text link
    Lead has been deposited on the ten-fold surface of decagonal Al72Ni11Co17 to form an epitaxial quasicrystalline single-element monolayer. The overlayer grows through nucleation of nanometer-sized irregular islands and the coverage saturates at 1 ML. The overlayer is well-ordered quasiperiodically as evidenced by LEED and Fourier transforms of STM images. Annealing the film to 600 K improves the structural quality, but causes the evaporation of some material such that the film develops pores. Electronic structure measurements using X-ray photoemission spectroscopy indicate that the chemical interaction of the Pb atoms with the substrate is weak.Comment: 12 pages, 5 figure

    Pseudomorphic Growth of a Single Element Quasiperiodic Ultrathin Film on a Quasicrystal Substrate

    Get PDF
    An ultrathin film with a periodic interlayer spacing was grown by the deposition of Cu atoms on thefivefold surface of the icosahedral Al70 Pd21 Mn9 quasicrystal. For coverages from 5 to 25 monolayers, a distinctive quasiperiodic low-energy electron diffraction pattern is observed. Scanning tunneling microscopy images show that the in-plane structure comprises rows having separations of S = 4.5 �0.2 �A and L = 7.3 0.3 A, whose ratio equals � =1.618... within experimental error. The sequences of such row separations form segments of terms of the Fibonacci sequence, indicative of the formation of a pseudomorphic Cu film

    The surface science of quasicrystals

    Get PDF
    The surfaces of quasicrystals have been extensively studied since about 1990. In this paper we review work on the structure and morphology of clean surfaces, and their electronic and phonon structure. We also describe progress in adsorption and epitaxy studies. The paper is illustrated throughout with examples from the literature. We offer some reflections on the wider impact of this body of work and anticipate areas for future development. (Some figures in this article are in colour only in the electronic version

    Effect of the fungicide Prochloraz-Mn on the cell wall structure of Verticillium fungicola

    Get PDF
    The chemical structure of the cell wall of two isolates of Verticillium fungicola collected from diseased fruit bodies of the commercial mushroom Agaricus bisporus treated with the fungicide Prochloraz-Mn was analyzed. The isolates were obtained during different periods of time and grown in the absence and presence of the LD50 values of the fungicide for V. fungicola. In addition, another V. fungicola isolate collected previous to the routine utilization of Prochloraz-Mn but grown under the same conditions was also analyzed. The overall chemical composition of the cell wall from the three isolates showed detectable differences in their basic components, with a significant decrease in the protein content in fungicide-treated cells. This inhibitory effect was partially compensated by an increase in neutral and/or aminated carbohydrates and was accompanied by appreciable modifications of polysaccharide structure, as deduced after methylation analysis and gas-liquid chromatography- mass spectrometry (GLC-MS). Moreover, differences in hyphal morphology caused by the fungicide were observed by transmission electron microscopy (TEM)

    Surface structure of the Ag-In-(rare earth) complex intermetallics

    Get PDF
    We present a study of the surface structure of the Ag-In-RE (RE: rare-earth elements Gd, Tb, and Yb) complex intermetallics using scanning tunneling microscopy and low-energy electron diffraction. The surface of the Ag-In-Yb approximant prepared by sputter-annealing methods under ultrahigh-vacuum conditions produces a flat (100) surface with no facets. However, the Ag-In-Gd and Ag-In-Tb 1/1 approximants, which have a surface miscut of about 12∘ relative to the (100) plane, develop surface facets along various crystallographic directions. The structure of each facet can be explained as a truncation of the rhombic triacontahedral clusters, i.e., the main building blocks of these systems. Despite their differences in atomic structure, symmetry, and density, the facets show common features. The facet planes are In rich. The analysis of the nearest-neighbor atom distances suggests that In atoms form bonds with the RE atoms, which we suggest is a key factor that stabilizes even low-density facet planes

    Formation of a stable deacagonal quasicrystalline Al-Pd-Mn surface layer

    Get PDF
    We report the in situ formation of an ordered equilibrium decagonal Al-Pd-Mn quasicrystal overlayer on the 5-fold symmetric surface of an icosahedral Al-Pd-Mn monograin. The decagonal structure of the epilayer is evidenced by x-ray photoelectron diffraction, low-energy electron diffraction and electron backscatter diffraction. This overlayer is also characterized by a reduced density of states near the Fermi edge as expected for quasicrystals. This is the first time that a millimeter-size surface of the stable decagonal Al-Pd-Mn is obtained, studied and compared to its icosahedral counterpart.Comment: Submitted to Phys. Ref. Lett. (18 July 2001

    Archimedean-like colloidal tilings on substrates with decagonal and tetradecagonal symmetry

    Full text link
    Two-dimensional colloidal suspensions subject to laser interference patterns with decagonal symmetry can form an Archimedean-like tiling phase where rows of squares and triangles order aperiodically along one direction [J. Mikhael et al., Nature 454, 501 (2008)]. In experiments as well as in Monte-Carlo and Brownian dynamics simulations, we identify a similar phase when the laser field possesses tetradecagonal symmetry. We characterize the structure of both Archimedean-like tilings in detail and point out how the tilings differ from each other. Furthermore, we also estimate specific particle densities where the Archimedean-like tiling phases occur. Finally, using Brownian dynamics simulations we demonstrate how phasonic distortions of the decagonal laser field influence the Archimedean-like tiling. In particular, the domain size of the tiling can be enlarged by phasonic drifts and constant gradients in the phasonic displacement. We demonstrate that the latter occurs when the interfering laser beams are not adjusted properly

    Ordering of Si atoms on the fivefold Al

    Full text link

    International Recommendations for Training Future Toxicologic Pathologists Participating in Regulatory-Type, Nonclinical Toxicity Studies*

    Get PDF
    The International Federation of Societies of Toxicologic Pathologists (IFSTP) proposes a common global framework for training future toxicologic pathologists who will support regulatory-type nonclinical toxicology studies. Trainees optimally should undertake a scientific curriculum of at least 5 years at an accredited institution leading to a clinical degree (veterinary medicine or medicine). Trainees should then obtain 4 or more years of intensive pathology practice during a residency and/or on-the-job “apprenticeship,” at least 2 years of which must be focused on regulatory-type toxicologic pathology topics. Possession of a recognized pathology qualification (i.e., certification) is highly recommended. A non-clinical pathway (e.g., a graduate degree in medical biology or pathology) may be possible if medically trained pathologists are scarce, but this option is not optimal. Regular, lifelong continuing education (peer review of nonclinical studies, professional meetings, reading, short courses) will be necessary to maintain and enhance one’s understanding of current toxicologic pathology knowledge, skills, and tools. This framework should provide a rigorous yet flexible way to reliably train future toxicologic pathologists to generate, interpret, integrate, and communicate data in regulatory-type, nonclinical toxicology studies
    corecore