6 research outputs found

    Pack Density Limitations of Hybrid Parachutes

    Get PDF
    The development and testing of the Orion crew capsule parachute system has provided a unique opportunity to study dense parachute packing techniques and limits, in order to establish a new baseline for future programs. The density of parachute packs has a significant influence on vibration loads, retention system stresses, and parachute mortar performance. Material compositions and pack densities of existing designs for space capsule recovery were compared, using the pack density of the Apollo main parachutes as the current baseline. The composition of parachutes has changed since Apollo, incorporating new materials such as Kevlar , Vectran , Teflon and Spectra . These materials have different specific densities than Nylon, so the densities of hybrid parachute packs cannot be directly compared to Nylon parachutes for determination of feasibility or volume allocation. Six parachute packs were evaluated in terms of weighted average solid density in order to achieve a non-dimensional comparison of packing density. Means of mitigating damage due to packing pressure and mortar firing were examined in light of the Capsule Parachute Assembly System (CPAS) and Apollo experience. Parachute design improvements including incorporation of modern materials and manufacturing processes serves to make CPAS the new knowledge base on which future spacecraft parachute systems will be built

    Meta-analytic connectivity and behavioral parcellation of the human cerebellum

    No full text
    The cerebellum historically has been thought to mediate motor and sensory signals between the body and cerebral cortex, yet cerebellar lesions are also associated with altered cognitive behavioral performance. Neuroimaging evidence indicates that the cerebellum contributes to a wide range of cognitive, perceptual, and motor functions. Here, we used the BrainMap database to investigate whole-brain co-activation patterns between cerebellar structures and regions of the cerebral cortex, as well as associations with behavioral tasks. Hierarchical clustering was performed to meta-analytically identify cerebellar structures with similar cortical co-activation, and independently, with similar correlations to specific behavioral tasks. Strong correspondences were observed in these separate but parallel analyses of meta-analytic connectivity and behavioral metadata. We recovered differential zones of cerebellar co-activation that are reflected across the literature. Furthermore, the behaviors and tasks associated with the different cerebellar zones provide insight into the specialized function of the cerebellum, relating to high-order cognition, emotion, perception, interoception, and action. Taken together, these task-based meta-analytic results implicate distinct zones of the cerebellum as critically involved in the monitoring and mediation of psychological responses to internal and external stimuli
    corecore