96 research outputs found

    Conventional type-II superconductivity in locally non-centrosymmetric LaRh2_2As2_2 single crystals

    Full text link
    We report on the observation of superconductivity in LaRh2_2As2_2, which is the analogue without ff-electrons of the heavy-fermion system with two superconducting phases CeRh2_2As2_2. A zero-resistivity transition, a specific-heat jump and a drop in magnetic ac susceptibility consistently point to a superconducting transition at a transition temperature of Tc=0.28T_c = 0.28\,K. The magnetic field-temperature superconducting phase diagrams determined from field-dependent ac-susceptibility measurements reveal small upper critical fields μ0Hc212\mu_{\mathrm{0}}H_{c2} \approx 12\,mT for HabH\parallel ab and μ0Hc29\mu_{\mathrm{0}}H_{c2} \approx 9\,mT for HcH\parallel c. The observed Hc2H_{c2} is larger than the estimated thermodynamic critical field HcH_c derived from the heat-capacity data, suggesting that LaRh2_2As2s_2 is a type-II superconductor with Ginzburg-Landau parameters κGLab1.9\kappa^{ab}_{GL} \approx 1.9 and κGLc2.7\kappa^{c}_{GL}\approx 2.7. The microscopic Eliashberg theory indicates superconductivity to be in the weak-coupling regime with an electron-phonon coupling constant λeph0.4\lambda_{e-ph} \approx 0.4. Despite a similar TcT_c and the same crystal structure as the Ce compound, LaRh2_2As2_2 displays conventional superconductivity, corroborating the substantial role of the 4ff electrons for the extraordinary superconducting state in CeRh2_2As2_2.Comment: 11 pages, 8 figure

    Acting while perceiving: assimilation precedes contrast

    Get PDF
    To explore the nature of specific interactions between concurrent perception and action, participants were asked to move one of their hands in a certain direction while simultaneously observing an independent stimulus motion of a (dis)similar direction. The kinematics of the hand trajectories revealed a form of contrast effect (CE) in that the produced directions were biased away from the perceived directions (“Experiment 1”). Specifically, the endpoints of horizontal movements were lower when having watched an upward as opposed to a downward motion. However, when participants moved under higher speed constraints and were not presented with the stimulus motion prior to initiating their movements, the CE was preceded by an assimilation effect, i.e., movements were biased toward the stimulus motion directions (“Experiment 2”). These findings extend those of related studies by showing that CEs of this type actually correspond to the second phase of a bi-phasic pattern of specific perception–action interference

    100 Gbit/s serial transmission using a silicon-organic hybrid (SOH) modulator and a duobinary driver IC

    Get PDF
    100 Gbit/s three-level (50 Gbit/s 00K) signals are generated using a silicon-organic hybrid modulator and a BiCMOS duobinary driver IC at a BER of 8.5x10(-5)(<10(-12)). We demonstrate dispersion-compensated transmission over 5 km

    Nanophotonic modulators and photodetectors using silicon photonic and plasmonic device concepts

    Get PDF
    Nanophotonic modulators and photodetectors are key building blocks for high-speed optical interconnects in datacom and telecom networks. Besides power efficiency and high electro-optic bandwidth, ultra-compact footprint and scalable co-integration with electronic circuitry are indispensable for highly scalable communication systems. In this paper, we give an overview on our recent progress in exploring nanophotonic modulators and photodetectors that combine the specific strengths of silicon photonic and plasmonic device concepts with hybrid integration approaches. Our work comprises electro-optic modulators that exploit silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration to enable unprecedented energy efficiency and transmission speed, as well as waveguide-based plasmonic internal photo-emission detectors (PIPED) with record-high sensitivities and bandwidths

    On interference effects in concurrent perception and action

    Get PDF
    Recent studies have reported repulsion effects between the perception of visual motion and the concurrent production of hand movements. Two models, based on the notions of common coding and internal forward modeling, have been proposed to account for these phenomena. They predict that the size of the effects in perception and action should be monotonically related and vary with the amount of similarity between what is produced and perceived. These predictions were tested in four experiments in which participants were asked to make hand movements in certain directions while simultaneously encoding the direction of an independent stimulus motion. As expected, perceived directions were repelled by produced directions, and produced directions were repelled by perceived directions. However, contrary to the models, the size of the effects in perception and action did not covary, nor did they depend (as predicted) on the amount of perception–action similarity. We propose that such interactions are mediated by the activation of categorical representations

    Capacitively Coupled Silicon-Organic Hybrid Modulator for 200 Gbit/s PAM-4 Signaling

    Get PDF
    We demonstrate capacitively coupled silicon-organic hybrid (SOH) modulator with a π-voltage-length product of 1.3 V mm and 3 dB EO bandwidth exceeding 65 GHz. The modulator is used for 200 Gbit/s (100 GBd) PAM-4 signaling

    Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores

    Get PDF
    In this article, we describe a series of complexes with electron-rich cis-{Ru^(II)(NH_3)_4}^(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845−4859). They have been isolated as their PF_6− salts and characterized by using various techniques including ^1H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru^(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities β have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d → π^* metal-to-ligand charge-transfer (MLCT) and π → π^* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant β_0 responses as high as ca. 600 × 10^(−30) esu. These pseudo-C_(2v) chromophores show two substantial components of the β tensor, β_(zzz) and β_(zyy), although the relative significance of these varies with the physical method applied. According to HRS, β_(zzz) dominates in all cases, whereas the Stark analyses indicate that β_(zyy) is dominant in the shorter chromophores, but β_(zzz) and β_(zyy) are similar for the extended species. In contrast, finite field calculations predict that β_(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand π-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880−3891)
    corecore