104 research outputs found
Modeling the impact of white-plague coral disease in climate change scenarios
Coral reefs are in global decline, with coral diseases increasing both in prevalence and in space, a situation that is expected only to worsen as future thermal stressors increase. Through intense surveillance, we have collected a unique and highly resolved dataset from the coral reef of Eilat (Israel, Red Sea), that documents the spatiotemporal dynamics of a White Plague Disease (WPD) outbreak over the course of a full season. Based on modern statistical methodologies, we develop a novel spatial epidemiological model that uses a maximum-likelihood procedure to fit the data and assess the transmission pattern of WPD. We link the model to sea surface temperature (SST) and test the possible effect of increasing temperatures on disease dynamics. Our results reveal that the likelihood of a susceptible coral to become infected is governed both by SST and by its spatial location relative to nearby infected corals. The model shows that the magnitude of WPD epidemics strongly depends on demographic circumstances; under one extreme, when recruitment is free-space regulated and coral density remains relatively constant, even an increase of only 0.5 degrees C in SST can cause epidemics to double in magnitude. In reality, however, the spatial nature of transmission can effectively protect the community, restricting the magnitude of annual epidemics. This is because the probability of susceptible corals to become infected is negatively associated with coral density. Based on our findings, we expect that infectious diseases having a significant spatial component, such as Red-Sea WPD, will never lead to a complete destruction of the coral community under increased thermal stress
On Merging Feature Engineering and Deep Learning for Diagnosis, Risk-Prediction and Age Estimation Based on the 12-Lead ECG
Objective: Machine learning techniques have been used extensively for 12-lead
electrocardiogram (ECG) analysis. For physiological time series, deep learning
(DL) superiority to feature engineering (FE) approaches based on domain
knowledge is still an open question. Moreover, it remains unclear whether
combining DL with FE may improve performance. Methods: We considered three
tasks intending to address these research gaps: cardiac arrhythmia diagnosis
(multiclass-multilabel classification), atrial fibrillation risk prediction
(binary classification), and age estimation (regression). We used an overall
dataset of 2.3M 12-lead ECG recordings to train the following models for each
task: i) a random forest taking the FE as input was trained as a classical
machine learning approach; ii) an end-to-end DL model; and iii) a merged model
of FE+DL. Results: FE yielded comparable results to DL while necessitating
significantly less data for the two classification tasks and it was
outperformed by DL for the regression task. For all tasks, merging FE with DL
did not improve performance over DL alone. Conclusion: We found that for
traditional 12-lead ECG based diagnosis tasks DL did not yield a meaningful
improvement over FE, while it improved significantly the nontraditional
regression task. We also found that combining FE with DL did not improve over
DL alone which suggests that the FE were redundant with the features learned by
DL. Significance: Our findings provides important recommendations on what
machine learning strategy and data regime to chose with respect to the task at
hand for the development of new machine learning models based on the 12-lead
ECG
The distribution and abundance of black band disease and white syndrome in Kepulauan Seribu, Indonesia
Coral diseases that have emerged since the early 1970s have caused significant regional ecological impacts. However, there has been a paucity of research into coral disease in South-East Asia, including Indonesia. This study provides baseline coral disease data in the Kepulauan Seribu Marine National Park. Previously only one type of disease [White syndrome (WS)] has been detected at this site. In this study we show a positive correlation between overall coral cover and the dominant reef building coral Montipora spp. on research sites and found that two main diseases, black band disease (BBD) and WS, were highly prevalent throughout all reefs. Based on spatial location, the highest abundance of BBD (0.08 col./m2) was found at sites nearer (zone 1) to the mainland, whilst for WS (0.05 col./m2) highest abundance was found at middle sites (zone 2). According to the temporal data, the highest abundance of BBD (0.77 col./m2) was found during the transition period (between wet and dry seasons), whereas for WS higher abundance occurred within the dry season (0.07 col./m2). There was a significant difference in disease abundance among seasons which was correlated with increasing temperature and light intensity along with variations in total organic matters, nitrite and phosphate levels. Moreover, the middle sites experienced additional stress from the waste material originating from the mainland, transported via currents flowing in this direction (the currents flow in reverse during the rainy season)
PhysioZoo: The Open Digital Physiological Biomarkers Resource
PhysioZoo is a collaborative platform designed for the analysis of continuous
physiological time series. The platform currently comprises four modules, each
consisting of a library, a user interface, and a set of tutorials: (1)
PhysioZoo HRV, dedicated to studying heart rate variability (HRV) in humans and
other mammals; (2) PhysioZoo SPO2, which focuses on the analysis of digital
oximetry biomarkers (OBM) using continuous oximetry (SpO2) measurements from
humans; (3) PhysioZoo ECG, dedicated to the analysis of electrocardiogram (ECG)
time series; (4) PhysioZoo PPG, designed to study photoplethysmography (PPG)
time series. In this proceeding, we introduce the PhysioZoo platform as an open
resource for digital physiological biomarkers engineering, facilitating
streamlined analysis and data visualization of physiological time series while
ensuring the reproducibility of published experiments. We welcome researchers
to contribute new libraries for the analysis of various physiological time
series, such as electroencephalography, blood pressure, and phonocardiography.
You can access the resource at physiozoo.com. We encourage researchers to
explore and utilize this platform to advance their studies in the field of
continuous physiological time-series analysis.Comment: 4 pages, 2 figure, 50th Computing in Cardiology conference in
Atlanta, Georgia, USA on 1st - 4th October 202
Science, Diplomacy, and the Red Sea\u27s Unique Coral Reef: It\u27s Time for Action
Rapid ocean warming due to climate change poses a serious risk to the survival of coral reefs. It is estimated that 70–90 percent of all reefs will be severely degraded by mid-century even if the 1.5°C goal of the Paris Climate Agreement is achieved. However, one coral reef ecosystem seems to be more resilient to rising sea temperatures than most others. The Red Sea’s reef ecosystem is one of the longest continuous living reefs in the world, and its northernmost portion extends into the Gulf of Aqaba. The scleractinian corals in the Gulf have an unusually high tolerance for the rapidly warming seawater in the region. They withstand water temperature anomalies that cause severe bleaching or mortality in most hard corals elsewhere. This uniquely resilient reef employs biological mechanisms which are likely to be important for coral survival as the planet’s oceans warm. The Gulf of Aqaba could potentially be one of the planet’s largest marine refuges from climate change. However, this unique portion of the Red Sea’s reef will only survive and flourish if serious regional environmental challenges are addressed. Localized anthropogenic stressors compound the effects of warming seawater to damage corals and should be mitigated immediately. Reefs in the rest of the Red Sea are already experiencing temperatures above their thermal tolerance and have had significant bleaching, though they too would benefit from fewer local anthropogenic stressors. The countries bordering the entire Red Sea will need to cooperate to enable effective scientific research and conservation. The newly established Transnational Red Sea Center, based at the Ecole Polytechnique Fédérale de Lausanne (EPFL), can serve as the regionally inclusive, neutral organization to foster crucial regional scientific collaboration
Diversity Partitioning of Stony Corals Across Multiple Spatial Scales Around Zanzibar Island, Tanzania
The coral reefs of Zanzibar Island (Unguja, Tanzania) encompass a considerable proportion of the global coral-reef diversity and are representative of the western Indian Ocean region. Unfortunately, these reefs have been recently subjected to local and regional disturbances. The objectives of this study were to determine whether there are potentially non-random processes forcing the observed coral diversity patterns, and highlight where and at which spatial scales these processes might be most influential.A hierarchical (nested) sampling design was employed across three spatial scales, ranging from transects (<or=20 m), stations (<100 m), to sites (<1000 m), to examine coral diversity patterns. Two of the four sites, Chumbe and Mnemba, were located within Marine Protected Areas (MPAs), while the other two sites, Changuu and Bawe, were not protected. Additive partitioning of coral diversity was used to separate regional (total) diversity (gamma) into local alpha diversity and among-sample beta diversity components. Individual-based null models were used to identify deviations from random distribution across the three spatial scales. We found that Chumbe and Mnemba had similar diversity components to those predicted by the null models. However, the diversity at Changuu and Bawe was lower than expected at all three spatial scales tested. Consequently, the relative contribution of the among-site diversity component was significantly greater than expected. Applying partitioning analysis for each site separately revealed that the within-transect diversity component in Changuu was significantly lower than the null expectation.The non-random outcome of the partitioning analyses helped to identify the among-sites scale (i.e., 10's of kilometers) and the within-transects scale (i.e., a few meters; especially at Changuu) as spatial boundaries within which to examine the processes that may interact and disproportionately differentiate coral diversity. In light of coral community compositions and diversity patterns we strongly recommend that Bawe be declared a MPA
Spatio-Temporal Transmission Patterns of Black-Band Disease in a Coral Community
Transmission mechanisms of black-band disease (BBD) in coral reefs are poorly understood, although this disease is considered to be one of the most widespread and destructive coral infectious diseases. The major objective of this study was to assess transmission mechanisms of BBD in the field based on the spatio-temporal patterns of the disease
Mating dynamics in a nematode with three sexes and its evolutionary implications
Nematodes have diverse reproductive strategies, which make them ideal subjects for comparative studies to address how mating systems evolve. Here we present the sex ratios and mating dynamics of the free-living nematode Rhabditis sp. SB347, in which males, females and hermaphrodites co-exist. The three sexes are produced by both selfing and outcrossing, and females tend to appear early in a mother’s progeny. Males prefer mating with females over hermaphrodites, which our results suggest is related to the female-specific production of the sex pheromones ascr#1 and ascr#9. We discuss the parallels between this system and that of parasitic nematodes that exhibit alternation between uniparental and biparental reproduction
Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere
Corals are prolific producers of dimethylsulfoniopropionate (DMSP). High atmospheric concentrations of the DMSP breakdown product dimethylsulfide (DMS) have been linked to coral reefs during low tides. DMS is a potentially key sulfur source to the tropical atmosphere, but DMS emission from corals during tidal exposure is not well quantified. Here we show that gas phase DMS concentrations (DMSgas) increased by an order of magnitude when three Indo-Pacific corals were exposed to air in laboratory experiments. Upon re-submersion, an additional rapid rise in DMSgas was observed, reflecting increased production by the coral and/or dissolution of DMS-rich mucus formed by the coral during air exposure. Depletion in DMS following re-submersion was likely due to biologically-driven conversion of DMS to dimethylsulfoxide (DMSO). Fast Repetition Rate fluorometry showed downregulated photosynthesis during air exposure but rapid recovery upon re-submersion, suggesting that DMS enhances coral tolerance to oxidative stress during a process that can induce photoinhibition. We estimate that DMS emission from exposed coral reefs may be comparable in magnitude to emissions from other marine DMS hotspots. Coral DMS emission likely comprises a regular and significant source of sulfur to the tropical marine atmosphere, which is currently unrecognised in global DMS emission estimates and Earth System Models
- …