7 research outputs found

    GRSF-1: a poly(A) +

    No full text

    Study on the Light Field Regulation of UVC-LED Disinfection for Cold Chain Transportation

    No full text
    In this paper, the pain point that cold chain transportation urgently needs for an efficient disinfection method is pointed out. Thus, this work aims at solving the problems and improving the disinfection efficiency in cold chain transportation. While Ultraviolet-C (UVC) irradiation is an effective method by which to kill viruses, it is difficult to apply the commonly used UVC-LED disinfection light source to ice-covered cold chain transportation due to its uneven light field distribution. Thus, the light field regulation of UVC-LED disinfection for cold chain transportation is studied. A UVC-LED chip with a wavelength of 275 nm was used as a light source, and parallel light was obtained by collimating lenses. Then, microlens array homogenization technology was used to shape the UVC light into a uniform light spot, with an energy space uniformity rate of 96.4%. Moreover, a simulation was conducted to compare the effects of the ice layer on the absorption of UVC light. Finally, an experiment was carried out to verify that the disinfection efficiency can be increased nearly by 30% with the proposed system by disinfecting E. coli (Escherichia coli), and the results indicate that the proposed system is an effective disinfection solution during cold chain transportation

    Mapping the C. elegans noncoding transcriptome with a whole-genome tiling microarray

    No full text
    The number of annotated protein coding genes in the genome of Caenorhabditis elegans is similar to that of other animals, but the extent of its non-protein-coding transcriptome remains unknown. Expression profiling on whole-genome tiling microarrays applied to a mixed-stage C. elegans population verified the expression of 71% of all annotated exons. Only a small fraction (11%) of the polyadenylated transcription is non-annotated and appears to consist of ∼3200 missed or alternative exons and 7800 small transcripts of unknown function (TUFs). Almost half (44%) of the detected transcriptional output is non-polyadenylated and probably not protein coding, and of this, 70% overlaps the boundaries of protein-coding genes in a complex manner. Specific analysis of small non-polyadenylated transcripts verified 97% of all annotated small ncRNAs and suggested that the transcriptome contains ∼1200 small (<500 nt) unannotated noncoding loci. After combining overlapping transcripts, we estimate that at least 70% of the total C. elegans genome is transcribed

    Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication

    No full text
    Advances in genome technology have facilitated a new understanding of the historical and genetic processes crucial to rapid phenotypic evolution under domestication1, 2. To understand the process of dog diversification better, we conducted an extensive genome-wide survey of more than 48,000 single nucleotide polymorphisms in dogs and their wild progenitor, the grey wolf. Here we show that dog breeds share a higher proportion of multi-locus haplotypes unique to grey wolves from the Middle East, indicating that they are a dominant source of genetic diversity for dogs rather than wolves from east Asia, as suggested by mitochondrial DNA sequence data3. Furthermore, we find a surprising correspondence between genetic and phenotypic/functional breed groupings but there are exceptions that suggest phenotypic diversification depended in part on the repeated crossing of individuals with novel phenotypes. Our results show that Middle Eastern wolves were a critical source of genome diversity, although interbreeding with local wolf populations clearly occurred elsewhere in the early history of specific lineages. More recently, the evolution of modern dog breeds seems to have been an iterative process that drew on a limited genetic toolkit to create remarkable phenotypic diversity
    corecore