1,112 research outputs found

    Tsallis' deformation parameter q quantifies the classical-quantum transition

    Get PDF
    We investigate the classical limit of a type of semiclassical evolution, the pertinent system representing the interaction between matter and a given field. On using as a quantifier of the ensuing dynamics Tsallis q-entropy, we encounter that it not only appropriately describes the quantum-classical transition, but that the associated deformation-parameter q itself characterizes the different regimes involved in the process, detecting the most salient fine details of the changeover.Comment: 19 pages, 7 figure

    Honesty by typing

    Get PDF
    We propose a type system for a calculus of contracting processes. Processes may stipulate contracts, and then either behave honestly, by keeping the promises made, or not. Type safety guarantees that a typeable process is honest - that is, the process abides by the contract it has stipulated in all possible contexts, even those containing dishonest adversaries

    Genetic Algorithm for Epidemic Mitigation by Removing Relationships

    Full text link
    Min-SEIS-Cluster is an optimization problem which aims at minimizing the infection spreading in networks. In this problem, nodes can be susceptible to an infection, exposed to an infection, or infectious. One of the main features of this problem is the fact that nodes have different dynamics when interacting with other nodes from the same community. Thus, the problem is characterized by distinct probabilities of infecting nodes from both the same and from different communities. This paper presents a new genetic algorithm that solves the Min-SEIS-Cluster problem. This genetic algorithm surpassed the current heuristic of this problem significantly, reducing the number of infected nodes during the simulation of the epidemics. The results therefore suggest that our new genetic algorithm is the state-of-the-art heuristic to solve this problem.Comment: GECCO '17 - Proceedings of the Genetic and Evolutionary Computation Conferenc

    Multiscale permutation entropy analysis of laser beam wandering in isotropic turbulence

    Get PDF
    We have experimentally quantified the temporal structural diversity from the coordinate fluctuations of a laser beam propagating through isotropic optical turbulence. The main focus here is on the characterization of the long-range correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. To fulfill this goal, a laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing the symbolic technique based on ordinal patterns to estimate the well-known permutation entropy. We show that the permutation entropy estimations at multiple time scales evidence an interplay between different dynamical behaviors. More specifically, a crossover between two different scaling regimes is observed. We confirm a transition from an integrated stochastic process contaminated with electronic noise to a fractional Brownian motion with a Hurst exponent H = 5/6 as the sampling time increases. Besides, we are able to quantify, from the estimated entropy, the amount of electronic noise as a function of the turbulence strength. We have also demonstrated that these experimental observations are in very good agreement with numerical simulations of noisy fractional Brownian motions with a well-defined crossover between two different scaling regimes.Comment: 8 pages, 6 figure

    Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform: dynamic study

    Get PDF
    We analyze, within the wavelet theory framework, the wandering over a screen of the centroid of a laser beam after it has propagated through a time-changing laboratory-generated turbulence. Following a previous work (Fractals 12 (2004) 223) two quantifiers are used, the Hurst parameter, HH, and the Normalized Total Wavelet Entropy, NTWS\text{NTWS}. The temporal evolution of both quantifiers, obtained from the laser spot data stream is studied and compared. This allows us to extract information of the stochastic process associated to the turbulence dynamics.Comment: 11 pages, 3 figures, accepted to be published in Physica

    Non-binary Language Forms in Spanish: Consciously Using it Facilitates Processing during Comprehension?

    Get PDF
    Several grammatical studies have focused on the study of morphological innovations used as non-binary forms in Spanish (-x; -e). However, there are no experimental studies that analyze their psycholinguistic processing or the multiple and complex relationships between production and comprehension in non- binary language. To analyze this phenomenon, we performed a sentence reading and comprehension task. We recorded reading times, response times, and accuracy. We considered morphology, stereotypicality and frequency of use of non-binary forms in the participants as predictors. The results show specialization of the non-binary forms as generic morphological variants, as opposed to the generic masculine. The non- binary forms consistently elicited a reference to mixed groups and response times showed that these morphological variants do not carry a higher processing cost than the generic masculine. Moreover, it is possible to see that the conscious use of non-binary forms influences the comprehension processes of the different variants of gender morphology: as the voluntary use of non-binary forms increases, the generic masculine seems to concentrate its reference to groups of men exclusively. Thus, in addition to showing general evidence regarding the processing costs and comprehension of gender morphology in Spanish, our data allow us to observe a potential reciprocal link between production and comprehension processes that deserves further study

    Modelling and verifying contract-oriented systems in Maude

    Get PDF
    We address the problem of modelling and verifying contractoriented systems, wherein distributed agents may advertise and stipulate contracts, but — differently from most other approaches to distributed agents — are not assumed to always behave “honestly”. We describe an executable specification in Maude of the semantics of CO2, a calculus for contract-oriented systems [6]. The honesty property [5] characterises those agents which always respect their contracts, in all possible execution contexts. Since there is an infinite number of such contexts, honesty cannot be directly verified by model-checking the state space of an agent (indeed, honesty is an undecidable property in general [5]). The main contribution of this paper is a sound verification technique for honesty. To do that, we safely over-approximate the honesty property by abstracting from the actual contexts a process may be engaged with. Then, we develop a model-checking technique for this abstraction, we describe an implementation in Maude, and we discuss some experiments with it
    corecore