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Abstract
Thanks to their universal approximation properties and new efficient training strategies,
Deep Neural Networks are becoming a valuable tool for the approximation of mathematical
operators. In the present work, we introduce Mesh-Informed Neural Networks (MINNs), a
class of architectures specifically tailored to handle mesh based functional data, and thus of
particular interest for reduced order modeling of parametrized Partial Differential Equations
(PDEs). The driving idea behind MINNs is to embed hidden layers into discrete functional
spaces of increasing complexity, obtained through a sequence of meshes defined over the
underlying spatial domain. The approach leads to a natural pruning strategy which enables
the design of sparse architectures that are able to learn general nonlinear operators. We
assess this strategy through an extensive set of numerical experiments, ranging from nonlocal
operators to nonlinear diffusion PDEs, where MINNs are compared against more traditional
architectures, such as classical fully connected Deep Neural Networks, but also more recent
ones, such as DeepONets and Fourier Neural Operators. Our results show that MINNs can
handle functional data defined on general domains of any shape, while ensuring reduced
training times, lower computational costs, and better generalization capabilities, thus making
MINNs very well-suited for demanding applications such as Reduced Order Modeling and
Uncertainty Quantification for PDEs.
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1 Introduction

Deep Neural Networks (DNNs) are one of the fundamental building blocks in modern
Machine Learning. Originally developed to tackle classification tasks, they have become
extremely popular after reporting striking achievements in fields such as computer vision
[34] and language processing [50]. Not only, an in-depth investigation of their approximation
properties has also been carried out in the last decade [6, 11, 17, 25, 29]. In particular, DNNs
have been recently employed for learning (nonlinear) operators in high-dimensional spaces
[12, 22, 33, 40], because of their unique properties, such as the ability to blend theoretical and
data-driven approaches. Additionally, the interest in using DNNs to learn high-dimensional
operators arises from the potential repercussions that these models would have on fields such
as Reduced Order Modeling.

Consider for instance a parameter dependent PDEproblem,where each parameter instance
µ leads to a solution uµ. In this framework, multi-query applications such as optimal control
and statistical inference are prohibitive to implement, as they imply repeated queries to
expensive numerical solvers. Then, learning the operator µ → uµ becomes of key interest,
as it allows one to replace numerical solvers with much cheaper surrogates. To this end,
DNNs can be a valid and powerful alternative, as they were recently shown capable of either
comparable or superior results with respect to other state-of-the-art techniques, e.g. [4, 19,
20]. More generally, other works have recently exploited physics-informedmachine learning
for efficient reduced order modeling of parametrized PDEs [10, 49]. Also, DNNmodels have
the practical advantage of being highly versatile as, differently from other techniques such
as splines and wavelets, they can easily adapt to both high-dimensional inputs, as in image
recognition, and outputs, as in the so-called generative models.

However, when the dimensions into play become very high, there are some practical issues
that hinder the use of as-is DNNmodels. In fact, classical dense architectures tend to have too
many degrees of freedom,whichmakes them harder to train, computationally demanding and
prone to overfitting [2]. As a remedy, alternative architectures such as Convolutional Neural
Networks (CNNs) and Graph Neural Networks (GNNs) have been employed over the years.
These architectures can handle very efficiently data defined respectively over hypercubes
(CNNs) or graphs (GNNs). Nevertheless, these models do not provide a complete answer,
especially when the high-dimensionality arises from the discretization of a functional space
such as L2(Ω), whereΩ ⊂ R

d is some bounded domain, possibly nonconvex. In fact, CNNs
cannot handle general geometries and they might become inappropriate as soon as Ω is not
an hypercube, although some preliminary attempts to generalize CNN in this direction have
recently appeared [21]. Conversely, GNNs have the benefit of considering their inputs and
outputs as defined over the vertices of a graph [47]. This appears to be a promising feature,
since a classical way to discretize spatial domains is to use meshing strategies, and meshes
are ultimately graphs. However, GNNs are heavily based on the graph representation itself,
and their construction does not exploit the existence of an underlying spatial domain. In
particular, GNNs were not constructed to operate at different levels of resolution: still, in a
context in which the discretization is ultimately fictitious, this would be a desirable property.

Inspired by these considerations, we introduce a novel class of sparse architectures, which
we refer to as Mesh-Informed Neural Networks (MINNs), to tackle the problem of learning
a (nonlinear) operator

G : V1 → V2,
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where V1 and V2 are some functional spaces, e.g. V1 = V2 ⊆ L2(Ω). The definition of G
may involve both local and nonlocal operations, such as derivatives and integrals, and it may
as well imply the solution to a Partial Differential Equation (PDE).

We cast the above problem in a setting that is more familiar to the Deep Learning literature
by introducing a form of high-fidelity discretization. This is an approach that has become
widely adopted by now, and it involves the discretization of the functional spaces along the
same lines of Finite Elementmethods, as in [4, 19, 36]. In short, one introduces amesh having
vertices {xi }Nh

i=1 ⊂ Ω , and defines Vh ⊂ L2(Ω) as the subspace of piecewise linear Lagrange
polynomials, where h > 0 is the stepsize of the mesh (the idea can be easily generalized to
higher order Finite Elements, as we show later on). Since each v ∈ Vh is uniquely identified
by its nodal values, we have Vh ∼= R

Nh , and the original operator to be learned can be replaced
by

Gh : Vh ∼= R
Nh → Vh ∼= R

Nh .

The idea is now to approximate Gh by training some DNN Φ : RNh → R
Nh . As we argued

previously, dense architectures are unsuited for such a purpose because of their prohibitive
computational cost during training, which ismostly caused by: i) the computational resources
required for the optimization, ii) the amount of training data needed to avoid overfitting.

To overcome this bottleneck, we propose Mesh-Informed Neural Networks. These are
ultimately based on an a priori pruning strategy, whose purpose is to inform the model with
the geometrical knowledge coming fromΩ . Aswewill demonstrate later in the paper, despite
their simple implementation, MINNs show reduced training times and better generalization
capabilities, making them a competitive alternative to other operator learning approaches,
such as DeepONets [40] and Fourier Neural Operators [39]. Also, they allow for a novel
interpretation of the so-called hidden layers, in a way that may simplify the practical problem
of designing DNN architectures.

The rest of the paper is devoted to the presentation ofMINNs and it is organized as follows.
In Sect. 2, we set some notation and formally introduce Mesh-Informed Neural Networks
from a theoretical point of view. There, we also discuss their implementation and comment
on the parallelism between MINNs and other emerging approaches such as DeepONets [40]
and Neural Operators [33]. We then devote Sects. 3, 4 and 5 to the numerical experiments,
addressing a different scientific question in each Section. More precisely: in Sect. 3, we
provide empirical evidence that the pruning strategy underlying MINNs is powerful enough
to resolve the issues of dense architectures; in Sect. 4, we showcase the flexibility of MINNs
in handling complex nonconvex domains; finally, in Sect. 5, we compare the performances of
MINNs with those of other state-of-the-art Deep Learning algorithms, namely DeepONets
and Fourier Neural Operators. Following the numerical experiments, in Sect. 6, we take the
chance to present an application where MINNs are employed to answer a practical problem
of Uncertainty Quantification related to the delivery of oxygen in biological tissues. Finally,
we draw our conclusions and discuss future developments in Sect. 7.

2 Mesh-Informed Neural Networks

In the present Section we present Mesh-Informed Neural Networks, a novel class of archi-
tectures specifically built to handle discretized functional data defined over meshes, and thus
of particular interest for PDE applications. Preliminary to that, we introduce some notation
and recall some of the basic concepts behind classical DNNs.
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2.1 Notation and Preliminaries

Deep Neural Networks are a powerful class of approximators that is ultimately based on
the composition of affine and nonlinear transformations. Here, we focus on DNNs having a
feedforward architecture. We report below some basic definitions.

Definition 1 Letm, n ≥ 1 and ρ : R → R. A layer with activation ρ is a map L : Rm → R
n

of the form L(v) = ρ (Wv + b), for some W ∈ R
n×m and b ∈ R

n .

In the literature, W and b are usually referred to as the weight and the bias of the
layer, respectively. Note that Definition 1 contains an abuse of notation, as ρ is evaluated
over an n-dimensional vector: we understand the latter operation componentwise, that is
ρ([x1, . . . , xn]) := [ρ(x1), . . . , ρ(xn)].
Definition 2 Letm, n ≥ 1. A neural network of depth l ≥ 0 is a mapΦ : Rm → R

n obtained
via composition of l + 1 layers, Φ = Ll+1 ◦ . . . L1.

The layers of a neural network do not need to share the same activation function and usually
the output layer, Ll+1, does not have one. Architectures with l = 1 are known as shallow
networks, while the adjective deep is used when l ≥ 2. We also allow for the degenerate case
in which the network reduces to a single layer (l = 0). The classical pipeline for building a
neural network model starts by fixing the architecture, that is the number of layers and their
input–output dimensions. Then, the weights and biases of all layers are tuned according to
some procedure, which typically involves the optimization of a loss function computed over
a given training set: for further details, the reader can refer to [27].

2.2 Mesh-Informed Layers

We consider the following framework. We are given a bounded domain Ω ⊂ R
d , not nec-

essarily convex, and two meshes (see Definition 3 right below) having respectively stepsizes
h, h′ > 0 and vertices

{x j }Nh
j=1, {x′

i }Nh′
i=1 ⊂ Ω.

The two meshes can be completely different and they can be either structured or unstruc-
tured. To each mesh we associate the corresponding space of piecewise linear Lagrange
polynomials, namely Vh, Vh′ ⊂ L2(Ω). Our purpose is to introduce a suitable notion of
mesh-informed layer L : Vh → Vh′ that exploits the a priori existence of Ω . In analogy to
Definition 1, L should have Nh neurons at input and Nh′ neurons at output, since Vh ∼= R

Nh

and Vh′ ∼= R
Nh′ . However, thinking of the state spaces as either comprised of functions or

vectors is fundamentally different: while we can describe the objects in Vh as regular, smooth
or noisy, these notions have no meaning inRNh , and similarly for Vh′ andRNh′ . Furthermore,
in the case of PDE applications, we are typically not interested in all the elements of Vh and
Vh′ , rather we focus on those that present spatial correlations coherent with the underlying
physics. Starting from these considerations, we build a novel layer architecture that can meet
our specific needs. In order to provide a rigorous definition, and directly extend the idea to
higher order Finite Element spaces, we first introduce some preliminary notation. For the
sake of simplicity, we will restrict to simplicial Finite Elements [13].

Definition 3 Let Ω ⊂ R
d be a bounded domain. LetM be a collection of d-simplices in Ω ,

so that each K ∈ M is a closed subset of Ω . For each element K ∈ M, define the quantities

hK := diam(K ), RK := sup {diam(S) | S is a ball contained in K } .
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We say that M is an admissible mesh of stepsize h > 0 over Ω if the following conditions
hold.

1. The elements are exhaustive, that is

dist

(
Ω,

⋃
K∈M

K

)
≤ h

where dist(A, B) = supx∈A inf y∈B |x − y| is the distance between A and B.
2. Any two distinct elements K , K ′ ∈ M have disjoint interiors. Also, their intersection is

either empty or results in a common face of dimension s < d .
4. The elements are non degenerate and their maximum diameter equals h, that is

min
K∈M RK > 0 and max

K∈M hK = h.

In that case, the quantity

σ = min
K∈M

hK
RK

< +∞,

is said to be the aspect-ratio of the mesh.

Definition 4 Let Ω ⊂ R
d be a bounded domain and let M be a mesh of stepsize h > 0

defined over Ω . For any positive integer q , we write Xq
h (M) for the Finite Element space of

piecewise polynomials of degree at most q , that is

Xq
h (M) := {v ∈ C(Ω) s.t. v|K is a polynomial of degree at most q ∀K ∈ M}.

Let Nh = dim(Xq
h (M)). We say that a collection of nodes {xi }Nh

i=1 ⊂ Ω and a sequence of

functions {ϕi }Nh
i=1 ⊂ Xq

h (M) define a Lagrangian basis of Xq
h (M) if

ϕ j (xi ) = δi, j i, j = 1, . . . , Nh .

We write Πh,q(M) : Xq
h (M) → R

Nh for the function-to-nodes operator,

Πh,q(M) : v → [v(x1), . . . , v(xNh )],
whose inverse is

Π−1
h,q(M) : c →

Nh∑
i=1

ciϕi .

We now have all we need to introduce our concept of mesh-informed layer.

Definition 5 (Mesh-informed layer) Let Ω ⊂ R
d be a bounded domain and d : Ω × Ω →

[0,+∞) a given distance function. Let M and M′ be two meshes of stepsizes h and h′,
respectively. Let Vh = Xq

h (M) and Vh′ = Xq ′
h′ (M) be the input and output spaces, respec-

tively. Denote by {x j }Nh
j=1 and {x′

i }Nh′
i=1 the nodes associated to a Lagrangian basis of Vh and

Vh′ respectively. A mesh-informed layer with activation function ρ : R → R and support
r > 0 is a map L : Vh → Vh′ of the form

L = Π−1
h′,q ′(M′) ◦ L̃ ◦ Πh,q(M)

where L̃ : RNh → R
N ′
h is a layer with activation ρ whose weight matrix W satisfies the

additional sparsity constraint below,

d (x j , x′
i ) > r ⇒ Wi, j = 0.
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Fig. 1 Comparison of a dense layer (cf. Definition 1) and a mesh-informed layer (cf. Definition 5). The dense
model features 3 neurons at input and 5 at output. All the neurons communicate: consequently the weight
matrix of the layer has 15 active entries. In the mesh-informed counterpart, neurons become vertices of two
meshes (resp. in green and red) defined over the same spatial domain Ω . Only nearby neurons are allowed to
communicate. This results in a sparse model with only 9 active weights

The distance function d in Definition 5 can be any metric over Ω . For instance, one may
choose to consider the Euclidean distance, d (x, x′) := |x− x′|. However, if the geometry of
Ω becomes particularly involved, better choices of d might be available, such as the geodesic
distance. The latter quantifies the distance of two points x, x′ ∈ Ω by measuring the length
of the shortest path within Ω between x and x′, namely

d (x, x′) := inf

{∫ 1

0
|γ ′(t)|dt, with γ ∈ C1([0, 1],Rd), γ ([0, 1]) ⊆ Ω,

γ (0) = x, γ (1) = x′
}
.

It is worth pointing out that, as a matter of fact, the projections Πh,q(M) and Π−1
h′,q ′(M′)

have the sole purpose of making Definition 5 rigorous. What actually defines the mesh-
informed layer L are the sparsity patterns imposed to L̃ . In fact, the idea is that these
constraints should help the layer in producing outputs that are more coherent with the under-
lying spatial domain (cf. Fig. 1). In light of this intrinsic duality between L and L̃ , we will
refer to the weights and biases of L as to those that are formally defined in L̃ . Also, for better
readability, from now on we will use the notation

L : Vh r−→ Vh′ ,

to emphasize that L is a mesh-informed layer with support r . We note that dense layers can be
recovered by letting r ≥ sup {d (x, x′) | x, x′ ∈ Ω}, while lighter architecture are obtained
for smaller values of r . The following result provides an explicit upper bound on the number
of nonzero entries in a mesh-informed layer. For the sake of simplicity, we restrict to the case
in which d is the Euclidean distance.

Theorem 1 Let Ω ⊂ R
d be a bounded domain and d the Euclidean distance. Let M and

M′ be two meshes having respectively stepsizes h, h′ and aspect-ratios σ, σ ′. Let

hmin := min
K∈M hK , h′

min := min
K ′∈M′ hK ′
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be the smallest diameters within the two meshes respectively. Let L : Vh
r−→ Vh′ be a

mesh-informed layer of support r > 0, where Vh := Xq
h (M) and Vh′ := Xq ′

h′ (M′). Then,

‖W‖0 ≤ C

(
σσ ′ r

hminh′
min

)d

where ‖W‖0 is the number of nonzero entries in the weight matrix of the layer L, while
C = C(Ω, d, q, q ′) > 0 is a constant depending only on Ω , d, q and q ′.

Proof Let Nh := dim(Vh), Nh′ := dim(Vh′) and let {x j }Nh
j=1, {x′

i }Nh′
i=1 be the Lagrangian

nodes in the two meshes, respectively. Let ω := |B(0, 1)| be the volume of the unit ball in
R
d . Since minK ′ RK ′ ≥ h′

min/σ
′, the volume of an element in the output mesh is at least

vmin(h
′) := (h′

min/σ
′)dω.

It follows that, for any x ∈ Ω , the ball B(x, r) can contain at most

ne(r , h
′) := ωrd

vmin(h′)
=
(

σ ′r
h′
min

)d

elements of the output mesh. Therefore, the number of indices i such that |x′
i − x j | ≤ r is at

most ne(r , h′)c(d, q ′), where c(d, q ′) := (d + q ′)!/(q ′!d!) bounds the number of degrees of
freedom within each element. Finally,

‖W‖0 ≤ Nhne(r , h
′)c(d, q ′) ≤

≤ c(d, q)|Ω|
vmin(h)

ne(r , h
′)c(d, q ′) = c(d, q)c(d, q ′)|Ω|

ω
·
(

σσ ′r
hminh′

min

)d

.

��
Starting from here, we define MINNs by composition, with a possible interchange of

dense and mesh-informed layers. Consider for instance the case in which we want to define a
Mesh-Informed Neural Network Φ : Rp → Vh ∼= R

Nh that maps a low-dimensional input,
say p � Nh , to some functional output. Then, using our notation, one possible architecture
could be

Φ : Rp −−−→ V4h∼=
R

N4h

r = 0.5−−−−→ V2h∼=
R

N2h

r = 0.25−−−−→ Vh∼=
R

Nh

, (1)

The above scheme defines a MINN of depth l = 2, as it is composed of 3 layers. The first
layer is dense (Definition 1) and has the purpose of preprocessing the input while mapping
the data onto a coarse mesh (stepsize 4h). Then, the remaining two layers perform local
transformations in order to return the desired output. Note that the three meshes need not to
satisfy anyhierarchy, see e.g. Fig. 2.Also, the correspondingFiniteElement spaces need not to
share the same polynomial degree. Clearly, (1) can be generalized by employing any number
of layers, aswell as any sequence of stepsizes h1, . . . , hn and supports r1, . . . , rn−1. Similarly,
as we shall demonstrate in our experiments, one may also modify (1) to handle functional
inputs, e.g. by introducing a mesh-informed layer at the beginning of the architecture. The
choice of the hyperparameters remains problem specific, but a good rule of thumb is to
decrease the supports as the mesh becomes finer, so that the network complexity is kept
under control (cf. Theorem 1).
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Fig. 2 MINNs operate at different resolution levels to enforce local properties. Here, three meshes of a
vertical brain slice, represent three different hidden states in the pipeline of a suitable MINN architecture,
where neurons are identified with mesh vertices. Due to the sparsity constraint (Definition 5), the red neuron
only fires information to those in the highlighted region (second mesh); in turn, these can only communicate
with the neurons in the third mesh that are sufficiently close (orange region). In this way, despite relying on
local operations, MINNs can eventually spread information all over the domain by exploiting the composition
of multiple layers

2.3 Implementation Details

For simplicity, let us first focus on the case in which distances are evaluated according to the
Euclidean metric, d (x, x′) = |x − x′|. In this case, the practical implementation of mesh-
informed layers is straightforward and can be done as follows, cf. Fig. 3. Given Ω ⊂ R

d ,
h, h′ > 0, let X ∈ R

Nh×d and X′ ∈ R
Nh′×d be the matrices containing the degrees of

freedom associated to the chosen Finite Element spaces, that is X j,. := [X j,1, . . . , X j,d ]
are the coordinates of the j th node in the input mesh, and similarly for X′. In order to
build a mesh-informed layer of support r > 0, we first compute all the pairwise distances
Di, j := |X j,. −X′

i,.|2 among the nodes in the two meshes. This can be done efficiently using
tensor algebra, e.g.

D =
d∑

l=1

(eNh′ ⊗ X.,l − X′
.,l ⊗ eNh )

◦2

where X.,l is the lth column of X, ek := [1, . . . , 1] ∈ R
k , ⊗ is the tensor product and ◦2

is the Hadamard power. We then extract the indices {(ik, jk)}dofk=1 for which Dik , jk ≤ r2

and initialize a weight vector w ∈ R
dof. This allows us to declare the weight matrix W

in sparse format by letting the nonzero entries be equal to wk at position (ik, jk), so that
‖W‖0 = dof. Preliminary to the training phase, we fill the entries of w with random values
sampled from a suitable Gaussian distribution. The optimal choice for such distribution may
be problem dependent. Empirically, we see that good results can be achieved by sampling
the weights w1, . . . , wdof independently from a centered normal distribution with variance
1/dof. Otherwise, if the architecture is particularly deep, another possibility is to consider an
adaptation of the He initialization [31]. In the case of α-leakyReLU nonlinearities, the latter
suggests sampling wi from a centered Gaussian distribution with variance

σ 2
i = 2

(1 + α2)si
, (2)

where si is the cardinality of the set { j | Di, j ≤ r2}, that is, the number of input neurons
that communicate with the i th output neuron. Finally, in analogy to [31], if the layer has no
activation then one may just set α = 1 in Eq. (2).
The above reasoning can be easily adapted to the general case, provided that one is able
to compute efficiently all the pairwise distances d (X j,.,X′

i,.). Of course, the actual imple-
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Fig. 3 Implementation of a mesh-informed layer. Each panel reports a representation of the input/output
meshes (top row), the network architecture (bottom left) and the corresponding weight matrix (bottom right).
The degrees of freedom at the input/output meshes are associated to the input/output neurons of a reference
dense layer (left panel). For each input node, the neighbouring nodes at output are highlighted (center panel).
Then, all the remaining connections are pruned, and the final model is left with a sparse weight matrix (right
panel)

mentation will then depend on the specific choice of d . Since the case of geodesic distances
can be of particular interest in certain applications, we shall briefly discuss it below. In this
setting, the main difficulty arises from the fact that, in general, we are required to compute
distances between points of different meshes. Additionally, if we consider Finite Element
spaces of degree q > 1, not all the Lagrangian nodes will be placed over the mesh vertices,
meaning that we cannot exploit the graph structure of the mesh to calculate shortest paths.

To overcome these drawbacks, we propose the introduction of an auxiliary coarse mesh
M0 := {Ki }mi=1, whose sole purpose is to capture the geometry of the domain. We use
this mesh to build another graph, G , which describes the location of the elements Ki . More
precisely, let ci be the centroid of the element Ki . We let G be the weighted graph having
vertices {ci }mi=1, where we link ci with c j if and only if the elements Ki and K j are adjacent.
Then, to weight the edges, we use the Euclidean distance between the centroids. Once G is
constructed, we use Dijkstra’s algorithm to compute all the shortest paths along the graph.
This leaves us with an estimated geodesic distance gi, j for each pair of centroids (ci , c j ),
which we can precompute and store in a suitable matrix. Then, we approximate the geodesic
distance of any two points x, x′ ∈ Ω as

d (x, x′) ≈ gi(x),i(x′),

where i : Ω → {1, . . . ,m} maps each point to an element containing it, see Fig. 4. In other
words,

i(x) := min{i | x ∈ Ki }.
If the auxiliary mesh does not fill Ω completely, the relaxed version below may be used as
well

i(x) := min

{
i | dist(x, Ki ) = min

j=1,...,m
dist(x, K j )

}
.

In general, evaluating the index function i can be done in O(m) time. In particular, going
back to our original problem, we can approximate all the pairwise distances between the
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Fig. 4 Approximation of the geodesic distance d (x, y) as the shortest path across elements (blue triangles). In
general, the latter will differ from the Euclidean distance between the two points (orange dashed line) (Color
figure online)

nodes of the input and the output spaces in O(mNh + mN ′
n + m2) time. In fact, we can run

Dijkstra’s algorithm once and for all with a computational cost of O(m2). Then, we just need

to evaluate the index function i for all the Lagrangian nodes {x}Nh
i=1 and {x′}Nh′

i=1, which takes
respectively O(mNh) and O(mNh′).

2.4 A Supervised Learning Approach Based onMINNs

Once a mesh-informed architecture has been constructed, we learn the operator of interest
through a standard supervised approach. Let Gh : Θ → Vh be the high-fidelity discretization
of a suitable operator,whose pointwise evaluationsmay aswell involve the numerical solution
to a PDE. Here, we allow the input space, Θ , to either consist of vectors, Θ ⊂ R

p , or
(discretized) functions, e.g. Θ = Vh . Let Φ : Θ → Vh be a given MINN architecture: in
general, depending on the input type, the latter will consist of both dense and mesh-informed
layers. We assume that Φ has already been initialized according to some procedure, such as
those reported in Sect. 2.3, and that it is ready for training.

Wemakedirect use of the forwardoperator to compute a suitable collectionof trainingpairs
(thereby also referred to as training samples or snapshots, following the classical terminology
adopted in the Reduced Order Modeling literature),

{ fi , uih}Ntrain
i=1 ⊂ Θ × Vh,

with uih := Gh( fi ). Here, with little abuse of notation, we write f ∈ Θ , that is, we assume
to be in the case of functional inputs. If not so, the reader may simply replace the fi ’s with
suitable µi ’s. The training pairs are typically chosen at random, i.e. by equipping the input
space with a probability distribution P and by computing Ntrain independent samples.

We then train Φ by minimizing the mean squared L2-error, that is, by optimizing the
following loss function

L̂ (Φ) = 1

Ntrain

Ntrain∑
i=1

‖uih − Φ( fi )‖2L2(Ω)
, (3)

which acts as the empirical counterpart of

L (Φ) = E f∼P‖Gh( f ) − Φ( f )‖2L2(Ω)
. (4)
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This allows one to actually tune the model parameters (i.e. all layers weights and biases), and
obtain a suitable approximation Φ ≈ Gh . Then, multiple metrics can be used to evaluate the
quality of such an approximation. In this work, we shall often consider the average relative
L2-error, which we estimate thanks to a precomputed test set

E (Φ) = 1

Ntest

Ntest∑
i=1

‖ui,testh − Φ( f testi )‖L2(Ω)

‖ui,testh ‖L2(Ω)

≈ E f∼P

[ ||Gh f − Φ( f )||L2(Ω)

||Gh f ||L2(Ω)

]
. (5)

The test set { f testi , uih,test}Ntest
i=1 is constructed independently of the training set, but still relying

on the high-fidelity operator Gh and the probability distribution P.
If the approximation is considered satisfactory, then the expensive operator Gh can be

replaced with the cheaper MINN surrogate Φ, whose outputs can be evaluated with little to
none computational cost.
Before concluding this paragraph, it may be worth to emphasize a couple of things. First
of all, we highlight the fact that both the loss and the error function, respectively L̂ and E ,
require the computation of integral norms. However, this is not an issue: since both uih and
Φ( fi ) lie in Vh , we can compute these norms by relying on the mass matrix M ∈ R

Nh×Nh ,
which can be precomputed and stored once and for all. We recall in fact that the latter is a
highly sparse matrix defined in such a way that

∀v ∈ Vh, v := [v(x1), . . . , v(xNh )]T ⇒ ‖v‖L2(Ω) = vTMv,

where {xi }Nh
i=1 are the nodes corresponding to the degrees of freedom in Vh , cf. function-to-

nodes operator in Definition 4.
Finally, we remark that the MINN architecture is trained in a purely supervised fashion.

Even if the definition of the operator Gh might involve a PDE or any other physical law, none
of this knowledge is imposed over Φ. Similarly, we do not impose boundary conditions,
mass conservation, or other constraints, on the outputs of the MINN model: in principle,
these should be learned implicitly. Nonetheless, we recognize that MINNs should benefit
from the integration of such additional knowledge, as this is what other researchers have
already observed for other approaches in the literature [10, 21, 49]. As of now, we leave these
considerations for future works.

2.5 Relationship to Other Deep Learning Techniques

It is worth to comment on the differences and similarities that MINNs share with other Deep
Learning approaches. We discuss them below.

2.5.1 Relationship to CNNs and GNNs

Mesh-Informed architectures can operate at different levels of resolution, in a way that is very
similar to CNNs. However, their construction comes with multiple advantages. First of all,
Definition 5 adapts to any geometry, while convolutional layers typically operate on square
or cubic input–output. Furthermore, convolutional layers use weight sharing, meaning that
all parts of the domain are treated in the sameway. This may not be an optimal choice in some
applications, such as those involving PDEs, as we may want to differentiate our behavior
over Ω (for instance near of far away from the boundaries).

Conversely, MINNs share with GNNs the ability to handle general geometries. As a
matter of fact, we mention that these architectures have been recently applied to mesh-
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based data, see e.g. [15, 28, 45, 51]. With respect to GNNs, the main advantage of MINNs
lies in their capacity to work at different resolutions. This fact, which essentially comes
from the presence of an underlying spatial domain, has at least two advantages: it provides
a direct way for either reducing or increasing the dimensionality of a given input, and it
increases the interpretability of hidden layers (now the number of neurons is not arbitrary
but comes from the chosen discretization). In a way, mesh-informed architectures are similar
to hierarchical GNNs, however, their construction is fundamentally different. While GNNs
use aggregation strategies to collapse neighbouring information, MINNs differentiate their
behavior depending on the nodes that are being involved. This difference, makes the two
approaches better suited for different applications. For instance, GNNs can be of great interest
when dealing with geometric variability, as their construction allows for a single architecture
to operate over completely different domains, see e.g. [23]. Conversely, if the shape of the
domain is fixed, thenMINNs may grant a higher expressivity, as they are ultimately obtained
by pruning dense feedforward models. In this sense, MINNs only exploit meshing strategies
as auxiliary tools, and they appear to be a natural choice for learning discretized functional
outputs.

2.5.2 Relationship to DeepONets and Neural Operators

Recently, some new DNN models have been proposed for operator learning. One of these
are DeepONets [40], a mesh-free approach that is based on an explicit decoupling between
the input and the space variable. More precisely, DeepONets consider a representation of the
following form

(Gh f )(x) ≈ Ψ ( f ) · φ(x),

where · is the dot product, Ψ : Vh → R
m is the branch-net, and φ : Ω → R

m is the
trunk-net. DeepONets have been shown capable of learning nonlinear operators and are now
being extended to include a priori physical knowledge, see e.g. [49]. We consider MINNs
and DeepONets as two fundamentally different approaches that answer different questions.
DeepONets were originally designed to process input data coming from sensors and, being
mesh-free, they are particularly suited for those applications where the output is only partially
known or observed. In contrast, MINNs are rooted on the presence of a high-fidelity model
Gh and are thus better suited for tasks such as reduced order modeling. Another difference lies
in the fact that DeepONets include explicitly the dependence on the space variable x: because
of this, suitable strategies are required in order for them to deal with complex geometries or
incorporate additional information, such as boundary data, see e.g. [24]. Conversely, MINNs
can easily handle this kind of issues thanks to their global perspective.

In this sense, MINNs are much closer to the so-called Neural Operators, a novel class of
DNN models first proposed by Kovachki et al. in [33]. Neural Operators are an extension of
classical DNNs that was developed to operate between infinite dimensional spaces. These
models are ultimately based on Hilbert-Schmidt operators, meaning that their linear part, that
is ignoring activations and biases, is of the form

W : f →
∫

Ω

k(·, x) f (x)dx (6)

where k : Ω × Ω → R is some kernel function that has to be identified during the training
phase. Clearly, the actual implementation of Neural Operators is carried out in a discrete
setting and integrals are replaced with suitable quadrature formulas. Wemention that, among
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these architectures, Fourier Neural Operators (FNO) are possibly the most popular ones: we
shall discuss more about the comparison between MINNs and FNOs in Sect. 5.

The construction of Neural Operators is very general, to the point that other approaches,
such as ours, can be seen as a special case. Indeed, a rough Monte Carlo-type estimate of (6)
would yield

(L f )(x′
i ) =

∫
Ω

k(x′
i , x) f (x)dx ≈ |Ω|

Nh

∑
j

k(x′
i , x j ) f (x j ).

If we let {x j } j and {x′
i }i be the nodes in the two meshes, then the constraint in Definition 5

becomes equivalent to the requirement that k is supported somewhere near the diagonal, that
is supp(k) ⊆ {(x, x + ε) with |ε| ≤ r}.
We believe that these parallels are extremely valuable, as they indicate the existence of
a growing scientific community with common goals and interests. Furthermore, they all
contribute to the enrichment of the operator learning literature, providing researchers with
multiple alternatives from which to choose: in fact, as we shall see in Sect. 5, depending on
the problem at hand one methodology might be better suited than the others.

3 Numerical Experiments: Effectiveness of the Pruning Strategy

We provide empirical evidence that the sparsity introduced byMINNs can be of great help in
learning maps that involve functional data, such as nonlinear operators, showing a reduced
computational cost and better generalization capabilities. We first detail the setting of each
experiment alone, specifying the corresponding operator to be learned and the adoptedMINN
architecture. Then, at the end of the current Section, we discuss the numerical results.

Throughout all our experiments, we adopt a standardized approach for designing and
training the networks. In general, we always employ the 0.1-leakyReLU activation for all the
hidden layers, while we do not use any activation at the output. Every time a mesh-informed
architecture is introduced, we also consider its dense counterpart, obtained without imposing
the sparsity constraints. Both networks are then trained following the same criteria, so that
a fair comparison can be made. As loss function, we always consider the mean square error
computed with respect to the L2 norm, cf. Eq. (4).

The optimization of the loss function is performed via the L-BFGS optimizer, with learn-
ing rate always equal to 1 and no batching. What may change from case to case are the
network architecture, the number of epochs, and the size of the training set. After training,
we compare mesh-informed and dense architectures by evaluating their performance on 500
unseen samples (test set), which we use to compute an unbiased estimate of the average
relative error, cf. Eq. (5).
All the code was written in Python 3, mainly relying on the FEniCS and mshr libraries
for the construction of Finite Element spaces and the numerical solution of PDEs. The
implementation of neural network models, instead, was handled in Pytorch, and their
training was carried out on a GPU NVidia Tesla V100 (32GB of RAM).
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Fig. 5 Domains considered for the numerical experiments in Sect. 3. Panel a up to boundaries, Ω is the
difference of two circles, B(0, 1) and B(x0, 0.7), where x0 = (−0.75, 0). Panel b A polygonal domain
obtained by removing the rectangles [−0.75, 0.75] × [0.5, 1.5] and [−0.75, 0.75] × [−1.5,−0.5] from
(−2, 2) × (−1.5, 1.5). Panel c the unit circle B(0, 1). Panel d Ω is obtained by removing a square, namely
[−0.4, 0.4]2, from the unit circle B(0, 1)

3.1 Description of the Benchmark Operators

Learning a Parametrized Family of Functions

Let Ω be the domain defined as in Fig. 5a. For our first experiment, we consider a variation
of a classical problem concerning the calculation of the signed distance function of Ω . This
kind of functions are often encountered in areas such as computer vision [43] and real-time
rendering [1]. In particular, we consider the following operator,

G : Θ ⊂ R
3 → L2(Ω)

G : µ → uµ(x) := min
y∈∂Ω,
y2>μ1

|y − Aμ3x|ex1μ2

where µ = (μ1, μ2, μ3) is a finite dimensional vector, and Aμ3 = diag(1, μ3). In practice,
the value of uµ(x) corresponds to the (weighted) distance between the dilated point Aμ3x
and the truncated boundary ∂Ω ∩ {y : y2 > μ1}.

As input space we consider Θ := [0, 1] × [−1, 1] × [1, 2], endowed with the uniform
probability distribution. Since the input is finite-dimensional, we can think of G as to the
parametrization of a 3-dimensional hypersurface in L2(Ω). We discretize Ω using P1 tri-
angular Finite Elements with mesh stepsize h = 0.02, resulting in the high-fidelity space
Vh :=∼= R

13577. To learn the discretized operator Gh , we employ the following MINN archi-
tecture

R
3 → R

100 → V9h
r=0.4−−−−→ V3h

0.2−−→ Vh,

where the supports are defined according to the Euclidean distance. The corresponding dense
counterpart, which servers as benchmark, is obtained by removing the sparsity constraints
(equivalently, by letting the supports go to infinity). We train the networks on 50 samples and
for a total of 50 epochs.

Learning a Local Nonlinear Operator

As a second experiment, we learn a nonlinear operator that is local with respect to the input.
Let Ω be as in Fig. 5b. We consider the infinitesimal area operator G : H1(Ω) → L2(Ω),

G : u →
√
1 + |∇u|2.
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Note in fact that, if we associate to each u ∈ H1(Ω) the Cartesian surface

Su := {(x1, x2, u(x1, x2)} ⊂ R
3,

then Gu yields a measure of the area that is locally spanned by that surface, in the sense that∫
Su

φ(s)ds =
∫

Ω

φ(u(x)) (Gu) (x)dx

for any continuous map φ : Su → R. Over the input space Θ := H1(Ω) we consider the
probability distribution P induced by a Gaussian process with mean zero and covariance
kernel

Cov(x, y) = 1

|Ω| exp
(
−1

2
|x − y|2

)
.

We discretize Ω using a triangular mesh of stepsize h = 0.045 and P1 Finite Elements,
which results in a total of Nh = 11266 vertices. To sample from the Gaussian process, we
truncate its Karhunen-Loéve expansion at k = 100, as that suffices to capture the complexity
of the input field (actually, we mention that 40 modes would be enough to explain 95% of
the field variance: here, we set k = 100 to not oversimplify). Conversely, the output of the
operator is computed numerically by exploiting the high-fidelity mesh as a reference.

To learn Gh we use the MINN architecture below,

Vh
r=0.15−−−−→ V3h

r=0.3−−−−→ V3h
r=0.15−−−−→ Vh,

where the supports are intended with respect to the Euclidean metric. We train our model
over 500 snapshots and for a total of 50 epochs.

Learning a Nonlocal Nonlinear Operator

Since MINNs are based on local operations, it is of interest to assess whether they can
also learn nonlocal operators. To this end, we consider the problem of learning the Hardy-
Littlewood Maximal Operator G : L2(Ω) → L2(Ω),

(G f ) (x) := sup
r>0
⨏|y−x|<r | f (y)|dy

which is known to be a continuous nonlinear operator from L2(Ω) onto itself [42]. Here, we
let Ω := B(0, 1) ⊂ R

2 be the unit circle. Over the input space Θ := L2(Ω) we consider
the probability distribution P induced by a Gaussian process with mean zero and covariance
kernel

Cov(x, y) = exp
(−|x − y|2) .

As a high-fidelity reference, we consider a discretization of Ω via P1 triangular Finite Ele-
ments of stepsize h = 0.033, resulting in a state space Vh with Nh = 7253 degrees of
freedom. As for the previous experiment, we sample from P by considering a truncated
Karhunen–Loève expansion of theGaussian process (100modes). Conversely, the true output
u → Gh(u) is computed approximately by replacing the supremum over r with a maximum
across 50 equally spaced radii in [h, 2]. To learn Gh we use a MINN of depth 2 with a dense
layer in the middle,

Vh
r=0.25−−−−→ V2h → V2h

r=0.25−−−−→ Vh .
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The idea is that nonlocality can still be enforced through the use of fully connected blocks,
but this are only inserted at the lower fidelity levels to reduce the computational cost. We
train the architectures over 500 samples and for a total of 50 epochs. Also in this case, we
build the mesh-informed layers upon the Euclidean distance.

Learning the Solution Operator of a Nonlinear PDE

For our final experiment, we consider the case of a parameter dependent PDE, which is
a framework of particular interest in the literature of Reduced Order Modeling. In fact,
learning the solution operator of a PDE model by means of neural networks allows one to
replace the original numerical solver with a much cheaper and efficient surrogate, which
enables expensive multi-query tasks such as PDE constrained optimal control, Uncertainty
Quantification or Bayesian Inversion.

Here, we consider a steady version of the porous media equation, defined as follows

− ∇ · (|u|2∇u
)+ u = f . (7)

The PDE is understood in the domain Ω defined in Fig. 5d, and it is complemented with
homogeneousNeumann boundary conditions.We defineG to be the data-to-solution operator
that maps f → u. This time, we endow the input space with the push-forward distribution
#P induced by the square map f → f 2, where P is the probability distribution associated to
a Gaussian random field with mean zero and covariance kernel

Cov(x, y) = 1

1 + |x − y|2 .

To sample from the latter distribution we exploit a truncated Karhunen–Loève expansion of
the random field. This time, we set the truncation index to k = 20, as that is sufficient to
capture 99.71% of the volatility in the Gaussian random field. Indeed, the total variance of
the latter is ∫

Ω

Cov(x, x)dx =
∫

Ω

1dx = π − (0.8)2 ≈ 2.50159,

while, by direct computation, the first 20 eigenvalues of the covariance operator sum up to
2.49458. For the high-fidelity discretization, we consider a mesh of stepsize h = 0.03 and P1
Finite Elements, resulting in Nh = 5987. Finally, we employ the MINN architecture below,

Vh
r=0.4−−−−→ V4h → V2h

r=0.2−−−−→ Vh, (8)

where the supports are defined according to the Euclidean distance. We train our model over
500 snapshots and for a total of 100 epochs. Note that, as in our third experiment, we employ
a dense block at the center of the architecture. This is because the solution operator to a
boundary value problem is typically nonlocal (consider, for instance, the Green formula for
the Poisson equation).

3.2 Numerical Results

Table 1 reports the numerical results obtained across the four experiments. In general,
MINNs perform better with respect to their dense counterpart, with relative errors that are
always below 5%. As the operator to be learned becomes more and more involved, fully
connected DNNs begin to struggle, eventually reaching an error of 15% in the PDE example.
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Table 1 Comparison of Mesh-Informed Neural Networks and Fully Connected DNNs for the test cases in
Sect. 3

Operator Nh Architecture Test error (%) Gen. error (%)

Low-dimensional manifold 13,577 Mesh-Informed 4.14 3.08

Dense 4.78 4.07

Local area operator 11,266 Mesh-Informed 1.49 1.36

Dense 3.89 2.54

H–L maximal operator 7253 Mesh-Informed 3.65 1.49

Dense 6.70 3.09

Nonlinear PDE solver 5987 Mesh-Informed 4.29 3.03

Dense 15.67 6.67

Nh = number of vertices in the (finest) mesh. Gen. error = Generalization error, defined as the gap between
training and test errors. All reported errors are intended with respect to the L2-norm, see Eq. (5)

In contrast, MINNs are able to keep up andmaintain their performance. This is also due to the
fact that, having less parameters, MINNs are unlikely to overfit, instead they can generalize
well even in poor data regimes (cf. last column of Table 1 Consider for instance the first
experiment, which counted as little as 50 training samples. There, the dense model returns
an error of 4.78%, of which 4.07% is due to the generalization gap. This means that the DNN
model actually surpassed theMINN performance over the training set, as their training errors
are respectively of 0.71% and 1.06%. However, the smaller generalization gap allows the
sparse architecture to perform better over unseen inputs.

Figures 6, 7, 8 and 9 reports some examples of approximation on unseen input values.
There, we note that dense models tend to have noisy outputs (Figs. 7 and 9 ) and often
miscalculate the range of values spanned by the output (Figs. 6 and 8 ). Conversely, MINNs
always manage to capture the main features present in the actual ground truth. This goes to
show that MINNs are built upon an effective pruning strategy, thanks to which they are able
to overcome the limitations entailed by dense architectures. This phenomenon can be further
appreciated in the plot reported in Fig. 10. The latter refers to the nonlinear PDE example,
Eq. (7), where our MINN architecture was of the form

Vh
r=δ−−−→ V4h → V2h

r= 1
2 δ−−−−→ Vh, (9)

with δ = 0.4. Figure10 shows how the choice of the support size, δ, affects the performance
of theMINNmodel. Since, here,Ω has a diameter of 2, for δ = 4 the architecture is formally
equivalent to a dense DNN. As the support decreases, the first and the last layer become
sparser, and, in turn, the architecture starts to generalize more, ultimately reducing the test
error by nearly 11%. However, if the support is too small, e.g. δ ≤ 0.125, this may have
a negative effect on the expressivity of the architecture, which now has too few degrees of
freedom to properly approximate the operator of interest. In general, the best support size
is to be found in the middle, 0 ≤ δ∗ ≤ diam(Ω): of note, in this case, our original choice
happens to be nearly optimal.

Aside from the improvement in performance,Mesh-InformedNeural Networks also allow
for a significant reduction in the computational cost (cf. Table 2). In general, MINNs are
ten to a hundred times lighter with respect to fully connected DNNs. While this is not
particularly relevant once the architecture is trained (the most heavy DNN weights as little
as 124 Megabytes), it makes a huge difference during the training phase. In fact, additional
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Fig. 6 Comparison of DNNs and MINNs when learning a low-dimensional manifold µ → uµ ∈ L2(Ω),
cf. Sect. 3.1. The reported results correspond to the approximations obtained on an unseen input value µ∗ =
[0.42, 0.04, 1.45].

Fig. 7 Comparison of DNNs and MINNs when learning the local operator u →
√
1 + |∇u|2, cf. Sect. 3.1.

The reported results correspond to the approximations obtained for an input instance outside of the training
set

Fig. 8 Comparison ofDNNs andMINNswhen learning theHardy-LittlewoodMaximal Operator, cf. Sect. 3.1.
The pictures correspond to the results obtained for an unseen input instance

Fig. 9 Comparison of DNNs and MINNs when learning the solution operator f → u of a nonlinear PDE, cf.
Sect. 3.1. The reported results correspond to the approximations obtained for an input instance f outside of
the training set
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Fig. 10 Relationship betweenmodel accuracy and support size inmesh-informed layers. Case study: nonlinear
PDE, see Eq. (7); MINN architecture: see Eq. (9). Red dots correspond to different choices for the support
of the mesh-informed layers; cubic splines are used to draw the general trend (red dashed line). In blue, our
original choice for the architecture, see Eq. (8). Errors are computed according to the L2-norm. The x-axis is
reported in logarithmic scale (Color figure online)

Table 2 Comparison of Mesh-Informed Neural Networks and Fully Connected DNNs in terms of their com-
putational cost. dof = degrees of freedom, i.e. number of parameters to be optimized during the training
phase

Architecture dof(M) Training speed (s/ep) Memory usage

Static (Mb) Training (Gb)

Mesh-Informed 0.3 0.64 1.3 0.01

Dense 21.7 2.47 86.9 3.49

Mesh-Informed 0.3 1.21 1.0 0.04

Dense 31.0 3.89 124.1 4.96

Mesh-Informed 1.0 0.68 3.9 0.16

Dense 12.8 1.66 51.2 2.05

Mesh-Informed 1.4 0.70 5.4 0.22

Dense 12.5 1.31 50.0 2.00

Memory usage (static) = bytes required to store the architecture. Memory usage (training) = bytes required
to run a single epoch of the training phase. s/ep = seconds per epoch, M = millions, Mb = Megabytes, Gb =
Gigabytes

resources are required to optimize a DNN model, as one needs to keep track of all the
operations and gradients in order to perform the so-called backpropagation step. This poses
a significant limitation to the use of dense architectures, as the entailed computational cost can
easily exceed the capacity ofmodernGPUs. For instance, in our experiments, fully connected
DNNs required more than 2 GB of memory during training, while, depending on the operator
to be learned, 10 to 250 MB were sufficient for MINNs. Clearly, one could also alleviate
the computational burden by exploiting cheaper optimization routines, such as first order
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optimizers and batching strategies, however this typically prevents the network from actually
reaching the global minimum of the loss function. In fact, we recall that the optimization of a
DNN architecture is, in general, a non-convex and ill-posed problem. Of note, despite being
10 to 100 times lighter, MINNs are only 2 to 4 times faster during training. We believe that
these results can be improved, possibly by optimizing the code used to implement MINNs.

4 Numerical Experiments: Handling General Nonconvex Domains

In the previous Section, when building our mesh-informed architectures, we always referred
to the Euclidean distance. This is because, for our analysis, we considered spatial domains
that were still quite simple in terms of shape and topology. In this sense, while most of
those domains were nonconvex, the Euclidean metric was still satisfactory for quantifying
distances.

In this Section, wewould like to investigate this further, by testingMINNs over geometries
that are far more complicated. We shall provide two examples: one concerning the flow of
a Newtonian fluid through a system of channels, and one describing a reaction-diffusion
equation solved on a 2D section of the human brain. In both cases, we shall not provide
comparisons with other Deep Learning techniques: the only purpose for this Section is to
assess the ability of MINNs in handling complicated geometries.

4.1 Stokes Flow in a System of Channels

As a first example, we consider the solution operator to the following parametrized (station-
ary) Stokes equation,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δu + ∇ p = 0 in Ω

−∇ · u = 0 in Ω

p = 0 on Γout

u = 0 on Ω \ (Γin ∪ Γin ∪4
i=1 Γi )

u = fy on Γin

u = g(i)
ai on Γi , i = 1, . . . , 4,

(10)

where p and u are respectively the fluid pressure and velocity, while Ω ⊂ R
2 is the domain

depicted in Fig. 11. The PDE depends on five scalar parameters. The first one, y ∈ [0.1, 0.8]
is used to parametrize the location of the inflow condition, which is given as

fy(x) = 100 · [1y−0.1,y+0.1(x2)((x2 − y)2 + 0.01), 0
]

In other words, fy describes a jet flow centered at y and directed towards the right. Vice
versa, the remaining four parameters, a1, . . . , a4 ∈ [0, 1], are used to model the presence of
possible leaks at the corresponding regions Γ1, . . . , Γ4. In particular, for each i = 1, . . . , 4,

g(i)ai (x) = aiηi (x1)(1 − ηi (x1)) · n,

where n is the external normal, while the ηi ’s are suitable affine transformations fromR → R

such that ηi ({x1 | x ∈ Γi }) = [0, 1]. Our output of interest, instead, is the velocity vector
field u : Ω → R

2, meaning that the operator under study is

G : (y, a1, . . . , a4) → u.
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Fig. 11 Spatial domain for the Stokes flow example, Sect. 4.1

As high-fidelity reference, we consider a discretized setting where the domainΩ is endowed
with a triangular mesh of stepsize h = 0.08, the pressure p is sought in the Finite Element
space of piecewise linear polynomials, Qh = X1

h , while the velocity u is found in the space
Vh of P1-Bubble vector elements [53], i.e. X1

h × X1
h ⊂ Vh ⊂ X3

h × X3
h . This is done in order

to ensure the numerical stability of classical Finite Element schemes associated to (10). Then,
our purpose is to approximate the operator

Gh : [0.1, 1.9] × [0, 1]4 → Vh ∼= R
17′050

with a suitable MINN surrogate, which we build as

R
5 → R

100 → V9h
r=1−−−→ Vh

r=0.08−−−−→ Vh . (11)

Note that, even for the hidden state at the third/fourth layer, we consider a space comprised
of Bubble elements (however, this is not mandatory). Here, in order to handle the fact that
Vh consists of 2-dimensional vector fields, each Lagrangian node is counted twice during the
construction of the mesh-informed layers. As a consequence, the mesh-informed layers will
allow information to travel locally in space but also interact in between dimensions.

As usual, we employ the 0.1-leakyReLUnonlinearity at the internal layers,whilewe do not
use any activation at output. We train our architecture over 450 randomly sampled snapshots,
and for a total of 50 epochs. Following the same criteria as in Sect. 3, we train the network
by optimizing the average squared error with respect to the L2-norm, cf. Eq.4, without using
batching strategies and by relying on the L-BFGS optimizer. This time, however, in order to
account for the complicated shape of the spatial domainΩ , we impose the sparsity constraints
in the mesh-informed layers according to the geodesic distance. We compute the latter as in
Sect. 2.3, where we exploit a coarse mesh of stepsize h∗ = 0.2 to approximate distances.
After training, our MINN surrogate reported an average L2-error of 5.39% when tested over
fifty new parameter instances, a performance that we consider to be satisfactory. In particular,
as it can be further appreciated from Fig. 12, the proposed MINN architecture succeeded in
learning the main characteristics of the operator under study. Of note, we mention that, in
this case, implementing the dense counterpart of architecture 11, as we did back in Sect. 3),
is computationally prohibitive. In fact, the latter would have≈ 300 ·106 degrees of freedom,
which, for instance, our GPU cannot handle.
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Fig. 12 Ground truth vs MINN approximation for the Stokes flow example, Sect. 4.1. The solutions reported
refer to two different configurations of the parameters (not seen during training), respectively on the left/right

4.2 Brain Damage Recovery

As a second example we consider a problem concerning a nonlinear diffusion reaction of
Fisher-Kolmogorov–Petrovsky–Piskunov (F-KPP) type [16] in a two-dimensional domain
representing a vertical section of a human brain across the sagittal plane. Specifically, we
consider the following time-dependent PDE⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
− 1

10
Δu = 103u(1 − u) in Ω × (0,+∞)

∇u · n = 0 in ∂Ω × (0,+∞)

u(x, 0) = ϕ(x) in Ω.

(12)

In the literature, researchers have used the F-KPP equation to model a multitude of biological
phenomena, including cell proliferation and wound healing, see e.g. [26, 48]. In this sense,
we can think of (12) as an equation that models the recovery of a damaged human brain,
even though much more sophisticated models would be required to properly describe such
phenomenon [46].

We thus interpret the solution to Eq. (12), u : Ω × [0,+∞) → [0, 1], as a map that
describes the level of healthiness of the brain at a given location at a given time (0 = highly
damaged, 1 = full health). Then, the dynamics induced by the F-KPP equation resembles that
of a healing process: in fact, for any initial profile ϕ : Ω → [0, 1], later modeled as a random
field, one has u(x, t) → 1 for t → +∞, where the speed of such convergence depends both
on ϕ and on the point x. In light of this, we introduce an additional map, τ : Ω → [0,+∞),
which we define as

τ(x) := inf {t ≥ 0 | u(x, t) ≥ 0.9} . (13)

In other words, τ(x) corresponds to the amount of time required by the healing process in
order to achieve a suitable recovery at the point x ∈ Ω . Our objective is to learn the operator

G : ϕ → τ, (14)
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which maps any given initial condition to the corresponding time-to-recovery map. To tackle
this problem, we first discretize Ω through a triangular mesh of stepsize h = 0.0213, over
which we define the state space of continuous piecewise linear Finite Elements, Vh , with
dim(Vh) = 2414. Then, for any fixed initial condition ϕ, we solve (12) numerically by
employing the Finite Element method in space and the backward Euler scheme in time
(Δt = 10−4). In particular, in order to compute an approximation of τ at the mesh vertices,
we evolve the PDE up until the first time at which all nodal values of the solution are above
0.9. In this way, for each ϕ ∈ Vh we are able to compute a suitable τ ∈ Vh , with τ ≈ G(ϕ).
Precisely, in order to guarantee that ϕ always takes values in [0,1], and that its realizations
have an underlying spatial correlation coherent with the geometry ofΩ , we cast our learning
problem in a probabilistic setting where we endow the input space with the push-forward
measure #P induced by the map

g → 1

2
tanh (10g + 5)) + 1

2

where P is the probability law of a centered Gaussian random field g defined over Ω with
Covariance kernel

Cov(x, y) := e−100d (x,y)2

d being the geodesic distance across Ω .
As model surrogate, we consider the MINN architecture reported below,

Vh
r=0.05−−−−→ V 5

2 h
r=0.1−−−−→ V 5

2 h
r=0.05−−−−→ Vh . (15)

which we train over 900 random snapshots and for a total of 300 epochs. As for our previous
test cases, we use the 0.1-leakyReLU activation at the internal layers and we optimize the
weights byminimizing themean squared L2-error: to do so,we rely on theL-BFGSoptimizer,
with default learning rate and no mini-batching. Note that, as for Sect. 4.1, here the supports
of the mesh-informed layers are computed following the geodesic distance (stepsize of the
auxiliary coarse mesh: h∗ = 0.107). However, differently from the previous test case, we
only employ mesh-informed layers. This is because, intuitively, we expect the phenomenon
under study to be mostly local in nature.
After training, our architecture reported an average L2-error of 7.40% (computed on 100
randomly sampled unseen instances). Figure13 shows the initial condition of the brain for
a given realization of the random field ϕ, together with its high-fidelity approximation for
τ and the corresponding MINN prediction. Once again, we see a good agreement between
the actual ground truth and the neural network output. For instance, the proposed MINN
model succeeds in recognizing a fundamental feature of the healing process, that is: despite
reporting an equivalent damage, two different regions of the domain may require completely
different times for their recovery; in particular, those regions that are more isolated will take
longer to heal.

5 Numerical Experiments: Comparison with DeepONets and Fourier
Neural Operators

Our purpose for the current Section is to compare the performances of MINN architectures
with those of two other popular Deep Learning approaches to operator learning, namely
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Fig. 13 Initial condition (right), ground truth of the time-to-recovery map (center) and corresponding MINN
approximation (right) for an unseen instance of the brain damage recovery example, Sect. 4.2. Note: a different
colorbar is used for the initial condition and the time-to-recovery map, respectively (Color figure online)

DeepONets andFourierNeuralOperators (FNO). To startwith,we compare the threemethod-
ologies on a benchmark case study, where the performances of DeepONets and FNO have
already been reported [41]. We then move on to consider two additional problems which,
despite their simplicity, we find to be of remarkable interest. These concern a dynamical
systemwith chaotic trajectories, and an advection-dominated problem, two notoriously chal-
lenging scenarios when it comes to surrogate and reduced order modeling. Here, we shall
exploit these problems to showcase the possible advantages that MINNs may offer with
respect to the state-of-the-art.
Here, for the sake of simplicity, we shall restrict our analysis to either 1D domains or 2D
squares,whichwe always discretize through uniformgrids. This is to ensure a fair comparison
betweenMINNs and other approaches, such as FNOs, whose generalization tomore complex
geometries is still in the progress of being (see, e.g., the recently proposed Laplace Neural
Operators, [7, 9]). We report our results in the subsections below. Before that, however, it
may be worth recalling the fundamental ideas behind DeepONets and FNOs.
Let Gh : Θ → Vh be our operator of interest, where Θ is some input space, while Vh ∼=
R

Nh is a given Finite Element space of dimension Nh , here consisting, for simplicity, of
piecewise linear polynomials. As we mentioned in Sect. 2.5.2, DeepONets are grounded on
a representation of the form

(Gh f )(x) ≈ Ψ ( f ) · φ(x),

where Ψ : Θ → R
m and φ : Ω → R

m are the branch and the trunk nets, respectively. Let
now {x j }Nh

j=1 be the nodes of the mesh at output, and let V ∈ R
Nh×m be the matrix

V :=
⎡
⎢⎣

φ1(x1) . . . φm(x1)
...

...

φ1(xNh ) . . . φm(xNh )

⎤
⎥⎦ , (16)

where φi (x) denotes the i th component of φ(x). We note that the map

Θ � f → V · Ψ ( f ) ∈ R
Nh ∼= Vh, (17)
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formally returns the DeepONet approximation across the overall output mesh. In particular,
this opens the possibility of directly replacing the trunk net with a suitable projection matrix
V. As a matter of fact, this is the strategy proposed by Lu et al. in [41], where the authors
exploit Proper Orthogonal Decomposition (POD) [52] to compute the projection matrix
V in an empirically optimal way. This technique, which the authors call POD-DeepONet,
is usually better performing than the vanilla implementation of DeepONet, but it requires
fixing the mesh discretization at output. Since the latter condition is always true within our
framework, we shall restrict our attention to POD-DeepONet for our benchmark analysis.
For what concerns FNOs instead, the fundamental building block of these architectures is
the Fourier layer. Similarly to convolutional layers, these architectures are defined to accept
inputs with multiple channels or features. In our setting, for a given feature dimension c, a
Fourier layer is a map L : (Vh)c → (Vh)c of the form

L(v) = ρ
(F−1 (R · F(v)) + Wv

)
(18)

where

• F : (Vh)c → R
m×c is the truncated Fourier transform, which takes the c-signals at input,

computes the Fourier transform of each of them and only keeps the first m coefficients;
• F−1 : Rm×c → (Vh)c is the inverse Fourier transform, defined for each channel sepa-

rately;
• R = (ri, j,k)i, j,k ∈ R

m×m×c is a learnable tensor that performs a linear transformation
in the Fourier space. For any given input A = (a j,k) j,k ∈ R

m×c, the action of the latter
is given by

R · A :=
⎛
⎝ m∑

j=1

ri, j,ka j,k

⎞
⎠

i,k

∈ R
m×c;

• W : Vh → Vh is a linear map whose action is given by

(Wv)(x) := W · v(x),
where W ∈ R

c×c is a learnable weight matrix;
• ρ is the activation function.

In practice, when approximating a given operator Gh : Θ → Vh , the implementation of a
complete FNO architecture is often of the form

P ◦ Ll ◦ · · · ◦ L1 ◦ E ◦ Φ̃ : Θ → Vh → (Vh)
c → · · · → (Vh)

c → Vh . (19)

Here, Φ is a preliminary block, possibly consisting of dense layers, that maps the input form
Θ to Vh . The FNO that exploits a lifting layer, E , to increase the number of channels, from Vh
to (Vh)c. Such lifting is typically performed by composing the signal at input with a shallow
(dense) network, e : R → R

c, so that E : v(x) → e(v(x)). The model then implements l
Fourier layers, which constitute the core of the FNO architecture. Finally, a projection layer
is used to map the output back from (Vh)c to Vh . As for the lifting operator, this is achieved
through the introduction of a suitable projection network, p : R → R

c, acting node-wise,
i.e. P : v(x) → p(v(x)).

5.1 Benchmark Problem: Diffusion Equation with Random Coefficients

To start, we consider a test case where the performances of DeepONets and FNOs have
already been reported, see, respectively [41] and [39]. Let Ω = (0, 1)2. We wish to learn the
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solution operator G : L∞(Ω) → L2(Ω) of the boundary value problem below{
−∇ · (a∇u) = 1 in Ω

u = 0 on ∂Ω,
(20)

where G : a → u. As usual, we cast our learning problem in a probabilistic setting by
endowing the input space, L∞(Ω), with a suitable probability distribution P. In short, the
latter is built so that a satisfies

P (a(x) ∈ {3, 12} ∀x ∈ Ω) = 1,

meaning that the PDE is characterized by a randompermeability fieldwith piecewise constant
realizations. For a more accurate description about the construction of such P, we refer to
[39, 41].

Following the same lines of [41], we discretize the spatial domain with a uniform 29x29
grid, which we can equivalently think of as a triangular rectangular mesh, M = {xi }841i=1, of
uniform stepsize h = √

2/28 ≈ 0.05. Both for training and testing, we refer to the dataset
made available by the authors in [41], which consists of 1000 training snapshots and 200
testing instances, respectively. As detailed in [39], the latter were obtained by repeatedly
solving Problem (20) via finite-differences. Consequently, for each random realization of the
permeability field, we have access to the nodal values a = [a(x)]x∈M ∈ R

Nh of the random
field, and the corresponding approximations of the PDE solution, u ≈ [u(x)]x∈M ∈ R

Nh ,
where Nh = 841. In this sense, we can think of the discrete operator as Gh : Vh → Vh , with
Vh = X1

h , even though it would be more natural to have X0
h as input space to account for the

discontinuities in a.
It is also in light of these considerations that we propose to learn to operator with the

MINN architecture below,

X1
h

r=0.1−−−−→ X0
4h

r=0.4−−−−→ X0
4h

r=0.2−−−−→ X1
h

r=0.2−−−−→ X1
h

r=0.1−−−−→ X1
h

r=0.2−−−−→ X1
h . (21)

The idea is that the first two layers should act as a preprocessing of the input. In particular,
aside from the dimensionality reduction, they serve the additional purpose of recasting the
original signal over the space of P0 Finite Elements, which we find to be better suited for
representing permeability fields.

This time, we employ the 0.3-leakyReLU activation for all the layers, including the last
one. This allows us to enforce, at least in a relaxed fashion, the fact that any PDE solution
to (20) should be nonnegative. We train our model for 300 epochs by minimizing the mean
squared L2-error through the L-BFGS optimizer (no batching, default learning rate), which
on our GPU takes only 1min an 56s.
After training, our model reports an average L2-error of 2.78%, which we find to be satis-
factory as it compares very well with both DeepONets and FNOs (cf. Table 3). In general, as
it can be observed from Fig. 14, the proposed MINN architecture can reproduce the overall
behavior of the PDE solutions fairly well, but it fails in capturing some of their local prop-
erties. Considering that our model is twice as accurate over the training snapshots than it is
over the test data (average relative error: 1.38% vs 2.78%), this might be due to a reduced
amount of training instances.

Nonetheless, our performances remain comparable with those achieved by the state-of-art.
Here, DeepONets attain the best accuracy thanks to their direct usage of the POD projection,
which is known to be particularly effective for elliptic problems [52]. Indeed, as shown
in [41], the same approach yields an average L2-error of 2.91% if one replaces the POD
basis with a classical trunk-net architecture. FNOs, instead, report the worst performance,
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Table 3 Comparison of Mesh-Informed Neural Networks, DeepONets and Fourier Neural Operators (FNO),
for the diffusion equation example, Sect. 5.1

MINN FNO POD-DeepONet

L2-relative error 2.78% 4.83% 2.32%

Layers 6 Mesh-informed 4 Fourier 2 Dense

2 Feature maps 2 Convolutional

Hyperparameters hcoarse = 4h c = 32 mPOD = 115

m = 12

All errors correspond to the average performance reported across the test set. For POD-DeepONet, the number
of layers refers to the branch net only. h = stepsize of the reference mesh, hcoarse = stepsize of the coarser
mesh, c = no. of features for the Fourier layers,m = no. of Fourier modes,mPOD = no. of POD basis functions

Fig. 14 Input field, ground truth and MINN approximation for a test instance of Problem (20), Sect. 5.1

by their accuracy can be easily increased if one exploits suitable strategies such as output
normalization. The latter consists in the construction of a surrogate model of the form

Gh(a) ≈ σΦ̃(a) + ū,

where Φ̃ is an FNO architecture to be learned, while

ū = ū(x) ≈ E[u] and σ 2 = σ 2(x) ≈ E|u − E[u]|2

are the pointwise average and variance of the solution field, respectively (both to be estimated
directly from the training data). Then, this trick allows one to obtain a better FNO surrogate
with a relative error of 2.41% [41].

5.2 Dealing with Chaotic Trajectories: The Kuramoto–Sivashinsky Equation

As a second example, we test the three methodologies in the presence of chaotic behaviors,
here arising from the Kuramoto–Sivashinsky equation, a time-dependent nonlinear PDE
that was first introduced to model thermal instabilities and flames propagation [35]. More
precisely, we consider the periodic boundary value problem below,⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
= −ν

∂4u

∂x4
− ∂2u

∂x2
− u

∂u

∂x
in R × (0, T ]

u(x, t) = u(x + �, t) (x, t) ∈ R × (0, T ]
u(x, 0) = u0(x) x ∈ R

(22)
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where � = T = 100 and u0(x) := π + cos(2πx/�) + 0.1 cos(4πx/�) are given, while
ν ∈ [1, 3.5] is a parameter.Wewish to learn the operatorG thatmaps ν onto the corresponding
PDE solution u = u(x, t). To this end, it is convenient to define the spacetime domain
Ω := (0, �) × (0, T ), which we equip with a uniform grid of dimension 100x100. As a
high-fidelity reference, we then consider a spectral method combined with a modified Crank-
Nicolson scheme for time integration (Δt = 5 · 10−4: trajectories are later subsampled to fit
the uniform grid over Ω). This allows us to define the discrete operator as

Gh : Θ → Vh,

with where Θ := [1, 3.5] and Vh := X1
h(Ω), so that dim(X1

h) = Nh = n2h = 10′000.
We use the numerical solver to compute a total of N = 1000 PDE solutions, {(νi , uih)}Ni=1,
Ntrain = 500 to be used for training and Ntest = 500 for testing.
We train all the models according to the loss function below

L (Φ) := 1

Ntrain

Ntrain∑
i=1

⎛
⎝ 1

n2h

nh∑
j,k=1

|uih(x j , tk) − Φ(νi )(x j , tk)|2
⎞
⎠

which we minimize iteratively, for a total of 500 epochs, using the L-BFGS optimizer. Sim-
ilarly, in order to emphasize the difference between the space and the time dimension, we
evaluate the accuracy of the models in terms of the relative error below,

E (Φ) :=

= 1

Ntest

N∑
i=Ntest

⎛
⎝ 1

nh

∑nh
k=1

√
1
nh

∑nh
j=1 |uih(x j , tk) − Φ(νi )(x j , tk)|2

1
nh

∑nh
k=1

√
1
nh

∑nh
j=1 |uih(x j , tk)|2

⎞
⎠

≈ 1

Ntest

N∑
i=Ntest

(‖uih − Φ(νi )‖L1((0,T ); L2(0,L))

‖uih‖L1((0,T ); L2(0,L))

)
, (23)

where norms are intended in the Bochner sense [14]. For the implementation of the three
approaches, we proceed as follows:

(i) POD-DeepONet: we exploit the training data to construct a POD basis V consisting of
m = 200 modes, as those should be sufficient for capturing most of the variability in the
solution space. We then construct the branch net as a classical DNN fromR → R

m , with
3 hidden layers of width 500, each implementing the 0.1-leakyReLU activation;

(ii) FNO: we use a combined architecture with a dense block at the beginning and three
Fourier layers at the end. The dense block consists of 2 hidden layers of width 500, and
an output layer with Nh neurons, all complemented with the 0.1-leakyReLU activation.
Then, the model is followed by three Fourier layers, which, for simplicity, are identical
in structure. In particular, following the same rule of thumb proposed by the authors [39],
we implement a Fourier block with c = 32 features andm = 12 Fourier modes per layer.
Once again, all layers (except for the last one) use the 0.1-leakyReLU as nonlinearity;

(iii) MINN: we propose the following architecture, obtained through a combination of dense
and mesh-informed layers

R → R
50 → V3h

r=20−−−→ Vh
r=6−−−→ Vh,

where we recall that the stepsize of the (finer) spacetime mesh is h = √
2. This time,

however, we do not use the Euclidean metric for the computation of the supports, but
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Table 4 Models comparison for the Kuramoto Sivashinsky example, Sect. 5.2

MINN FNO POD-DeepONet

(L1 of L2)-relative error 5.87% 9.41% 6.97%

Layers 2 Mesh-informed 3 Fourier 4 Dense

2 Dense 3 Dense

2 Feature maps

Hyperparameters hcoarse = 3h c = 32 mPOD = 200

m = 12

Error are computed according to Eq. (23). Table entries for Layers and Hyperparameters read as in Table 3

we rely on a different distance function that can account for the periodicity of the spatial
component. In fact, Eq. (22) is better understood in the periodic domain Ω̃ := (R/�Z)×
[0, T ], than it is over Ω . Here, R/�Z is the quotient of R with respect to the equivalence
relation below,

x ∼ x ′ ⇐⇒ (x − x ′)�−1 ∈ Z.

To account for this, we compute the supports of the mesh-informed layers according to
the following distance function d : Ω × Ω → [0,+∞),

d ((x, t), (x ′, t ′)) :=
√(

�

2
−
∣∣∣∣ �2 − |x − x ′|

∣∣∣∣
)2

+ (t − t ′)2.

This ensures the wished behavior over the unwrapped domain Ω . In fact, for instance,
one has

d ((1, 0), (3, 0)) = d ((1, 0), (99, 0)),

as we recall that � = 100.

After training, all model surrogates report relative errors below 10%, with MINNs achieving
the best performance, cf. Table 4. When tested over parametric instances outside of the
training set, the three approaches propose similar but different predictions, cf. Fig. 15. The
FNO-surrogate manages to capture the macroscopic features of the solution, but returns a
much noisier output. Conversely, the approximation proposed by POD-DeepONet is cleaner
and better resembles the original ground truth. Still, even the latter model fails to capture
some of the local features of the PDE solution, which, in contrast, the MINN architecture is
able to recover. The interested reader may also find additional insights in “Appendix A”.

Nonetheless, we must acknowledge that our analysis might be affected by the several
design choices that we had to make for the architectures. In fact, even though we did our
best in implementing and tuning the hyperparameters for the three approaches, we cannot
consider our results to be universal.

5.3 Dealing with the Kolmogorov Barrier: The Advection Equation

As a last example, we consider a situation in which the problem at hand exhibits a slow
decay of the Kolmogorov n-width. The latter is a quantity of particular interest in the areas of
surrogate and Reduced Order Modeling, as it measures to which extent a given phenomenon
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Fig. 15 Ground truth and corresponding approximations via MINN, POD-DeepONet and FNO, for a test
instance of the Kuramoto–Sivashinsky example, Sect. 5.2. The solutions are plotted over the spacetime domain
Ω = (0, �) × (0, T ).

can be described via linear superposition of suitable modes. More precisely, given a compact
subset S of a normed state space (V , ‖ · ‖), the Kolmogorov n-width of S is defined as

dn(S) := inf
H⊆V

dim(H)=n

sup
u∈S

inf
v∈H ‖u − v‖.

For instance, if dn(S) < ε for some n ∈ N, then there will be n modes, v1, . . . , vn ∈ V ,
capable of representing all the elements in S with an error that is smaller than ε. Vice versa,
if dn(S) decays slowly with n, then one is forced to consider a larger number of modes to
obtain a reasonable approximation. As we shall discuss in a moment, this fact can have a
huge impact for operator learning problems, especially for those approaches based on linear
projection techniques, such as DeepONets.

To see this, consider a continuous operator G : Θ → L2(Ω), with Θ ⊂ R
p a compact

subset and Ω a bounded domain. Let S := G(Θ) be the image of Θ through the operator G.

Then, it is straightforward to see that

dn(S) < ε ⇐⇒

∃{vi }ni=1 ⊂ L2(Ω), {φi }ni=1 ⊂ C(Θ) s.t. sup
µ∈Θ

∥∥∥∥∥G(µ) −
n∑

i=1

φi (µ)vi

∥∥∥∥∥
L2(Ω)

< ε,

(24)

furthermore, since the projection coefficients are optimal on any given (orthonormal) basis,
it is not restrictive to set φi (µ) := 〈G(µ), vi 〉L2(Ω). The equivalence in (24) shows that the
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effectiveness of a separation of variables approach, such as the one adopted by DeepONets
and POD-DeepONets, is confined by the behavior of the Kolmogorov n-width. In particular,
these approaches may encounter some difficulties if dn(S) happens to decay slowly.
In light of these considerations, we propose a final case study based on the advection equa-
tion, which, despite its simplicity, constitutes a prototypical example of slow decay in the
Kolmogorov n-width. More precisely, let us consider the evolution equation below⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u

∂t
+ c

∂u

∂x
= 0 in Ω × (0, T ]

u(0, t) = u0(−ct) t ∈ (0, T ]
u(x, 0) = u0(x) x ∈ Ω

(25)

where Ω = (0, 1), T = 1 and

u0(x) := 1√
2πσ 2

e−
1

2σ2
x2

,

with σ = 0.005, are given, while the wave velocity, c, is regarded as a model parameter. Our
goal is to approximate the operator

G : c → u(·, T ),

that maps the wave speed to the terminal state of the system. Equivalently, we may write
(Gc)(x) = u(x − c), as the solution to (25) is known in closed form. We exploit the latter
formula to generate a collection of 1000 random snapshots, where the input parameter is
sampled uniformly from Θ := [0.05, 0.95]. We keep 750 of such snapshots for training
a leave the remaining 250 for testing. For the implementation of the three Deep Learning
approaches we proceed as follows:

i) POD-DeepONet: we set up two possible architectures. For the first one, we use 50
POD modes and a DNN with 2 hidden layers of width 100 as branch net. As a second
architecture, instead, we consider a similar model where the number of POD basis is
increased to 200;

ii) FNO: we construct a model by concatenating a shallow network of width 100, which
maps R → R

Nh , with a Fourier block composed of two Fourier layers. We design the
latter along the same lines adopted by the authors in [39], i.e. by letting the number of
Fourier modes be equal to 16 and by introducing a total of 64 hidden features.

iii) MINN: we use the hybrid architecture below

R → R
100 → R

100 → V20h
r=0.1−−−−→ V4h

r=0.01−−−−→ Vh .

As usual, we equip the internal layers of all our architectures with the 0.1-leakyReLU acti-
vation. Similarly, we train the three models by minimizing the mean squared L2-error, as
we did for all our previous experiments. This time, we rely on the Adam optimizer for the
minimization of the loss function, which we run for a total of 50’000 epochs, starting with
a learning rate of 10−3 and halving it every 10’000 iterations. Here, in fact, for all of the
approaches we found the Adam optimizer to yield better results with respect to L-BFGS.
Results are in Table 5, Fig. 16 and “Appendix A”. Unsurprisingly, the two POD-DeepONets
achieve the highest errors, which is to be expected considering the nature of the problem
itself. In the first case, this is due to the poorness of the POD basis, which, with as little
as 50 modes, is unable to capture the overall phenomenon. In the second case, instead, this
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Table 5 Test errors for the advection equation, Sect. 5.3

MINN FNO POD-DeepONet

L2-relative error 4.18% 11.08% 42.63% (50 basis)

45.87% (200 basis)

Layers 2 Mesh-informed 3 Fourier 4 Dense

3 Dense 3 Dense

2 Feature maps

Hyperparameters hcoarse = 20h c = 64 mPOD = 50 − 200

hinter = 4h m = 16

Table entries as in Table 3. Here, hinter = intermediate resolution

Fig. 16 Model predictions of MINN (left), FNO (center) and POD-DeepONet (right) for an unobserved
parametric instance of the advection equation problem, Sect. 5.3. For POD-DeepONet, only the output of the
best model is reported (50 basis)

is caused by large number of POD coefficients to be learned by the branch net. In fact, in
our analysis, the largest POD basis (200 modes) reached an average projection error below
0.01%: therefore, here, the branch net is the only one responsible for the bad performance of
the model.

Conversely, things improve a lot if we move to fully nonlinear methods, such as FNOs
and MINNs. For instance, FNO is at least four times more accurate than POD-DeepONet,
with an average relative error of 11.08%. Still, its performance is not comparable with the
one achieved by our MINN surrogate (relative error: 4.18%). This difference may be further
appreciated by the plots reported in Fig. 16: while all the models predict the location of the
wave correctly, only the MINN surrogate manages to capture both the shape and the mag-
nitude of the signal; in contrast the approximations proposed by FNO and POD-DeepONet
present spurious oscillations and are either noisy or off-scale. This goes to show that even an
apparently simple phenomenon can give rise to highly nontrivial complications.

6 An Application to Uncertainty Quantification

We finally consider an application to Uncertainty Quantification (UQ) involving a partial
differential equation. UQ is an essential aspect of robust modelling, which often involves
expensive numerical and statistical routines. In this Section, we provide an example on how
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Fig. 17 Forward UQ problem (Sect. 6). Topology of the microvascular network Λ (left) and corresponding
oxygen distribution in the tissue u = uΛ (right). The top and the bottom rows corresponds respectively to a
poorly and a highly vascularized tissue (resp. λ = 1 and λ = 3). Globally, the two networks provide the same
amount of oxygen (cf. Eq. 26), but their topology significantly affects the values of u in the tissue. In the first
case (top row), nearly 31% of the tissue has an oxygen level below the threshold value u∗ := 0.1. Conversely,
only 3% of the tissue reports a low oxygen concentration in the second example

MINNs can alleviate these costs by serving asmodel surrogates in the computational pipeline.
In particular, starting from a suitable PDE model, we address a problem concerning oxygen
transfer in biological tissues.

6.1 Model Description

Oxygen is a fundamental constituent of most biological processes. In humans, oxygen is
delivered by the circulatory system from the lungs to the rest of the body. At the small
scales, cells receive oxygen from the vascular network of capillaries that spread all over the
body. An efficient oxygen transfer is fundamental to ensure a healthy micro-environment
and abnormal values in oxygen concentration are often associated to pathological scenarios.
In particular, hypoxia, that is the shortage of oxygen supplies, plays an important role in
the development and treatment of tumors. It has been shown that hypoxic tissue opposes a
resistance to chemotherapy and radiotherapy [8, 44]. These issues are caused by perturbed
properties of the tumor blood vessels in terms of morphology and phenotype. Here, we aim
at developing a methodology to assess the role of vascular morphology on tissue hypoxia.
More precisely, we wish to address the following question: how does the topology of the
vascular network relate to the size of the tissue under hypoxia? We answer this question in
the simplified setting that we describe below.

Within an idealized setting, we consider a portion of a vascularized tissue Ω := {x ∈
R
2 : |x | < 1}. Let Λ ⊂ Ω be a graph representing the vascular network of capillaries (cf.
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Fig. 17) and let u : Ω → [0, 1] be the oxygen concentration in the tissue, normalized to the
unit value. We model the oxygen transfer from the network to the tissue with the following
equations, {

−αΔu + u = (1 − u)δΛ in Ω

−α∇u · n = βu on ∂Ω

where α = 0.1 and β = 0.01 are respectively a fixed diffusion and resistance coefficient,
while δΛ is the unique singular measure for which∫

Ω

v(x)δΛ(dx) = 1

|Λ|
∫

Λ

v(s)ds

for all v ∈ C(Ω). Here, we denote by |Λ| := ∫
Λ
1ds the total length of the vascular graph. The

first equation in (6.1) describes the diffusion and consumption of oxygen, balanced according
to the amount released from the vascular network on the right hand side. Finally, the model
is closed using resistance boundary conditions of Robin type.

We understand (6.1) in the weak sense, meaning that define u = uΛ as the unique solution
to the problem below∫

Ω

α∇u(x) · ∇v(x)dx +
∫

Ω

u(x)v(x)dx +
∫

∂Ω

βu(s)v(s)ds =

= 1

|Λ|
∫

Λ

(1 − u(s))v(s)ds (26)

where the above is to be satisfied for all v ∈ H1(Ω).

6.2 Uncertainty Quantification Setting

As we mentioned previously, we are interested in the relationship between Λ and u. To this
end, we introduce the parameter space

Θ := {Λ ⊂ Ω : Λ is the union of finitely many segments}
which consists of all vascular networks. Note that, due to the normalizing factor 1/|Λ| in
(26), all the vascular networks actually provide the same global amount of oxygen. However,
as we will see later on, only those vascular graphs that are sufficiently spread across the
domain can ensure a proper oxygen supply to the whole tissue (cf. Fig. 17). In other words,
we explore the influence of the distribution of the network, rather than its density, on the
oxygen level.

The next subsection is devoted to prescribing a suitable discretization of (26) to work
with, and to introduce a class of probability measures {Pλ}λ defined over Θ . The idea is the
following. We will use a macro-scale parameter λ to describe the general perfusion of the
tissue. Higher values of λ will correspond to a highly vascularized tissue. This means that
the topology of the vascular network will still be uncertain, but the corresponding probability
distribution Pλ will favor dense graphs. Conversely, lower values of λwill describe scenarios
where capillaries are more sparse (see Fig. 17, top vs bottom row). This will then bring us to
consider the family of random variables

Qλ := 1

|Ω| |{uΛ < 0.1}| with Λ ∼ Pλ, (27)
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that measure the portion of the tissue under the oxygen threshold 0.1, which we take as
the value under which hypoxia takes place. Our interest will be to estimate the probability
density function of each Qλ and to provide a robust approximation of their expected value
E [Qλ]. While these tasks can be achieved using classical Monte Carlo, the computational
cost is enormous as it implies solving Eq. (26) repeatedly. To alleviate this burden, we will
replace the original PDE solver with a suitable MINN architecture trained to learn the map
Λ → uΛ.

6.3 Discretization and Implementation Details

For the random generation of vascular networks we exploit Voronoi diagrams [3]. Let P :=
{P ⊂ Ω | P finite} be the collection of all points tuples inΩ . To any P ∈ P , we associate the
vascular graph Λ(P) defined by the edges of the Voronoi cells generated by P . In this way,
we obtain a correspondence P → Θ given by P → Λ(P), that we can exploit to prescribe
probability measures over Θ . To this end, let λ > 0 and let Xλ be a Poisson point process
over Ω having a uniform intensity of 10λ. We denote by P̃λ the probability measure induced
by Xλ over P . Then, we define Pλ := #P̃λ as the push-forward measure obtained via the
action P → Λ(P). This ensures the wished behavior: higher values of λ tend to generate
more points in the domain and, consequently, denser graphs.

We now proceed to discretize the variational problem. As a first step, we note that the
vascular graphΛ is not given in terms of a parametrization, whichmakes it harder to compute
integrals of the form

∫
Λ

v(s)ds. As an alternative, we consider the smoothed approximation
below, ∫

Λ

v(s)ds ≈
∫

Ω

v(x)φΛ(x)dx, (28)

where

φΛ := 1

ε2
max {ε − dist(x,Λ), 0} .

Here, ε > 0 is a smoothness parameter that we fix to ε = 0.05. It is not hard to prove that, for
each v ∈ C(Ω) fixed, the right-hand side of Eq. (28) converges to the left hand-side as ε → 0:
for a detailed proof, the reader may refer to “Appendix B”. Then, our operator of interest
becomes G : φΛ → uΛ, and we can proceed with our usual discretization via P1 Finite
Elements. To this end, we discretize the domain using a triangular mesh of stepsize h = 0.03,
which results in Nh = 7253 degrees of freedom. Then, we allow λ to vary uniformly in [1,10]
and we generate a total of 4500 training snapshots according to the probability distributions
introduced previously. We exploit these snapshots to train the MINN model below,

Vh
r=0.1−−−−→ V3h → V3h

r=0.1−−−−→ Vh,

where the architecture has been defined in analogy to the one employed for the nonlinear
PDE in Sect. 3.1. The network is trained for a total of 50 epochs and using the same criteria
presented in Sect. 3.

6.4 Results

Once trained, the Mesh-Informed Neural Network reported an average L2-error of 4.99%,
with errors below 10% for 488 out of 500 test instances. We considered these results satisfac-
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Fig. 18 Results for the UQ problem in Sect. 6. Left panel: expected probability of low oxygenation, E[Qλ], as
a function of the vascularization level λ. Confidence bands are computed pointwise using a 99% confidence
level. Right panel: probability distribution of Qλ for different values of λ. Colors fade from red to purple as
λ grows (Color figure online)

tory and we proceeded to sample a total of 100’000 solutions using our DNN model. More
precisely, we considered 100 equally spaced values of λ in [1,10], and for each of those we
sampled 1’000 independent solutions. From there, we obtained an i.i.d. sample of size 1’000
for each of the Qλi , where λi = {1 + i/11}99i=0. Results are in Fig. 18.

The left panel of Fig. 18 shows the approximation of themap λ → E[Qλ]. As the tightness
of the 99% confidence bands suggests, the estimate is rather robust. Spurious oscillations
are most likely due to the numerical errors introduced by the MINN model, rather than from
statistical noise. Coherentlywith the physical interpretation ofλ, we see that the probability of
lowoxygenation decreaseswith the vascular density. Interestingly, although the total intensity
of the source term is normalized to the same level in any configuration, the networks with
higher gaps between neighboring edges are prone to spots of low oxygen concentration.
Not only, the decay appears to be exponential. Further investigations seem to confirm this
intuition, as we obtain an R2-coefficient of 0.987 when trying to relate λ and logE[Qλ] via
linear regression. Conversely, the right panel of Fig. 18 shows how the probability distribution
of Qλ changes according to λ. The densities are more spread out when λ is near 1, while
they shrink towards zero as λ increases. This is coherent with the physical intuition, and we
would expect the density of Qλ to converge to a Dirac delta as λ → +∞.

In real scenarios where the physical complexity of a vascularized tissue is appropriately
described as in [44], this analysis would be computationally viable only with the employment
of the MINN model as a surrogate for the numerical solver. In the case presented here, both
the full order model and the surrogate model are computationally inexpensive. However,
the former required around 2min to generate 1’000 PDE solutions. Conversely, the trained
DNN model was able to provide the same number of solutions in as little as 3 milliseconds,
corresponding to a speed up factor of approximately 40. For multiphysics models where a
simulation of a single point in the parameter space could cost hours of wall computational
time, such gain could enable approaches that would be otherwise unreasonable. Even in the
present simplified setting, such a boost also makes up for the computational effort required to
train the network. In fact: (i) collecting the training snapshots took 575.96 s, (ii) training the
MINNmodel required 125.32 s, (iii) generating the 100’000 new solutions took 0.3 s. In con-
trast, the numerical solver would generate at most≈ 5’500 solutions within the same amount
of time. These considerations support the interest in further developing model order reduc-
tion techniques based on deep neural networks that are robust for general spatial domains,
such as MINNs. In fact, we are currently developing model reduction techniques applied to
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realistic models of the vascular microenvironment that leverage on the DL-ROM framework,
previously developed in [18–20], combined with the efficiency of MINNs.

7 Conclusions

In this paper, we have introducedMesh-InformedNeural Networks (MINNs), a novel class of
sparse DNNmodels that can be used to learn general operators between infinite dimensional
spaces. The approach is based on an a priori pruning strategy that is obtained by embedding
the hidden states into discrete functional spaces of different resolution. Despite being very
easy to implement, MINNs show remarkable advantages with respect to dense architectures,
such as a massive reduction in the computational costs and an increased ability to generalize
over unseen samples. This is coherent with the results available in the pruning literature [5],
even though the setting differs from the one considered thereby.

We have testedMINNs over a large variety of scenarios, going from low dimensional man-
ifolds to parameter dependent PDEs, showing that these architectures can be a competitive
alternative for learning nonlinear operators in the presence of complex spatial domains. This
opens a wide new range of research directions that we wish to investigate further in future
works. For instance, one could test the use of MINNs in more sophisticated Deep Learning
basedReducedOrderModels for PDEs (DL-ROMs), such as those in [18–20, 38]. In addition,
considering how MINNs are actually built, it would be also interesting to see whether one
can take advantage of multi-fidelity strategies during the training phase, as in [30]. Finally,
another intriguing research question is whether one can characterize the approximation prop-
erties of such architectures, similarly to what other researchers have already done for FNOs
and DeepONets, see e.g. [32] and [37], respectively.
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Appendix A: Supplementary Material for Sect. 5

See Fig. 19 and Table 6.
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Fig. 19 Loss optimization forMINN, POD-DeepONet and FNO, for the two case studies reported in Sects. 5.2
and 5.3. For the advection equation, only the training of the best POD-DeepONet is reported (50 basis)

Table 6 Training times for MINN, POD-DeepONet and FNO, for the two case studies reported in Sects. 5.2
and 5.3

Case study MINN POD-DeepONet FNO

Kuramoto–Sivashinsky Sect. 5.2 12m 7s 3m 12s 1h 33m 17s

Advection equation Sect. 5.3 5m 6s 4m 7s 6h 56m 29s

For the advection equation, only the training time of the best POD-DeepONet is reported (50 basis)

Appendix B: Auxiliary Result for Sect. 6

Lemma 1 Let Ω be a Lipschitz domain. Let Λ ⊂ Ω be the union of finitely many segments,
where each segment intersects ∂Ω in atmost twopoints (the extremes). For anyfixedv ∈ C(Ω)

one has

1

ε2

∫
Ω

v(x)max {ε − dist(x,Λ), 0} dx →
∫

Λ

v(s)ds as ε ↓ 0+.

Proof Let ϕε
Λ be the (unscaled) kernel

ϕε
Λ(x) := max{ε − dist(x,Λ), 0}.

By definition, we note that ϕε
Λ vanishes outside of the set Λ + B(0, ε) := {x + εv | x ∈

Λ, v ∈ B(0, 1)}. We now proceed in three steps.
Step 1 We start by proving that the lemma holds whenever Λ is composed by a single
segment. Without loss of generality, we let Λ = [0, 1] × {0}. For the sake of simplicity, we
further assume that Λ ∩ ∂Ω = ∅. The case in which Λ has an extreme on the boundary can
be handled similarly by exploiting the Lipschitz regularity of ∂Ω . Let ε < dist(Λ, ∂Ω), so
that Λ + B(0, ε) ⊂ Ω . By direct computation we have∫

Ω

v(x)ϕε
Λ(x)dx = 1

ε2

∫
Λ+B(0,ε)

v(x)ϕε
Λ(x)dx =

= 1

ε2

∫
Aε∪Bε

v(x)ϕε
Λ(x)dx + 1

ε2

∫
[0,1]×[−ε,ε]

v(x)ϕε
Λ(x)dx

where Aε and Bε are two half circles of radius ε respectively centered at the extremes of
the segment Λ. It is easy to see that the first contribute vanishes as ε ↓ 0+. In fact, since
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||ϕε
Λ||∞ = ε,∣∣∣∣ 1ε2

∫
Aε∪Bε

v(x)ϕε
Λ(x)dx

∣∣∣∣ ≤ 1

ε2
||v||∞ · ε|Aε ∪ Bε | = πε||v||∞.

Conversely, for the second term we have∫ 1

0

1

ε2

∫ ε

−ε

v(x1, x2)ϕ
ε
Λ(x1, x2)dx2dx1 =

∫ 1

0

1

ε2

∫ ε

−ε

v(x1, x2)(ε − |x2|)dx2dx1 =

=
∫ 1

0

1

ε2

∫ 1

−1
v(x1, εz)(ε − ε|z|)εdzdx1 =

∫ 1

0

∫ 1

−1
v(x1, εz)(1 − |z|)dzdx1.

By letting ε ↓ 0+ we then get∫ 1

0

∫ 1

−1
v(x1, 0)(1 − |z|)dzdx1 =

(∫
Λ

v(s)ds
)(∫ 1

−1
(1 − |z|)dz

)
=
∫

Λ

v(s)ds.

Step 2 Let Λ = L1 ∪ · · · ∪ Ln be given by the union of n segments. For any i = 1, . . . , n,
let L̂i := {x ∈ Ω | dist(x, Li ) < dist(x,Λ\Li )}. We prove the following auxiliary result,

|(Ω \ L̂i ) ∩ (Li + B(0, ε))| = o(ε2).

To see this, we note that, upto sets of measure zero,

(Ω \ L̂i ) ∩ (Li + B(0, ε)) = (L̂1 ∪ . . . L̂i−1 ∪ L̂i+1 ∪ . . . L̂n) ∩ (Li + B(0, ε)).

It is then sufficient to prove that |L̂ j ∩ (Li + B(0, ε))| = o(ε2) for all j independently. If
Li ∩ L j = ∅, the proof is trivial. Conversely, if the two segments intersect, let θ be the angle
between the two lines. It is easy to see that the intersection L̂ j ∩ (Li + B(0, ε)) is contained
in a triangle of height ε and width ε/ tan(θ/2) + ε tan(θ/2). The conclusion follows.
Step 3 Let Λ = L1 ∪ · · · ∪ Ln and define the regions L̂1, . . . L̂n as in the previous step. Fix
any v ∈ C(Ω). Then

1

ε2

∫
Ω

v(x)ϕε
Λ(x)dx = 1

ε2

n∑
i=1

∫
L̂i

v(x)ϕε
Λ(x)dx =

n∑
i=1

1

ε2

∫
L̂i

v(x)ϕε
Li

(x)dx.

Therefore, we can prove the original claim by showing that 1
ε2

∫
L̂i

v(x)ϕε
Li

(x)dx →∫
Li

v(s)ds for each i . At this purpose, fix any i = 1, . . . , n. We have∣∣∣∣ 1ε2
∫

Ω

v(x)ϕε
Li

(x)dx − 1

ε2

∫
L̂i

v(x)ϕε
Li

(x)dx

∣∣∣∣ ≤ 1

ε2

∫
Ω\L̂i

|v(x)||ϕε
Li

(x)|dx ≤

≤ 1

ε2
||v||∞ · ε|(Ω \ L̂i ) ∩ (Li + B(0, ε))| = o(ε)

and the conclusion follows from Step 1. ��
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