
Modelling and verifying contract-oriented systems in Maude

Massimo Bartoletti Maurizio Murgia Alceste Scalas

Università degli Studi di Cagliari, Italy

Roberto Zunino

Università di Trento, Italy

Abstract

We address the problem of modelling and verifying contract-oriented systems, wherein
distributed agents may advertise and stipulate contracts, but — differently from most other
approaches to distributed agents — are not assumed to always behave “honestly”. We describe
an executable specification in Maude of the semantics of CO2, a calculus for contract-oriented
systems [5]. The honesty property [4] characterises those agents which always respect their
contracts, in all possible execution contexts. Since there is an infinite number of such contexts,
honesty cannot be directly verified by model-checking the state space of an agent (indeed,
honesty is an undecidable property in general [4]). The main contribution of this paper is a
sound verification technique for honesty. To do that, we safely over-approximate the honesty
property by abstracting from the actual contexts a process may be engaged with. Then, we
develop a model-checking technique for this abstraction, we describe an implementation in
Maude, and we discuss some experiments with it.

1 Introduction

Contract-oriented computing is a software design paradigm where the interaction between clients
and services is disciplined through contracts [5, 3]. Contract-oriented services start their life-cycle by
advertising contracts which specify their required and offered behaviour. When compliant contracts
are found, a session is created among the respective services, which may then start interacting to
fulfil their contracts. Differently from other design paradigms (e.g. those based on the session types
discipline [9]), services are not assumed to be honest, in that they might not respect the promises
made [4]. This may happen either unintentionally (because of errors in the service specification),
or because of malicious behaviour.

Dishonest behaviour is assumed to be automatically detected and sanctioned by the service
infrastructure. This gives rise to a new kind of attacks, that exploit possible discrepancies between
the promised and the actual behaviour. If a service does not behave as promised, an attacker
can induce it to a situation where the service is sanctioned, while the attacker is reckoned honest.
A crucial problem is then how to avoid that a service results definitively culpable of a contract
violation, despite of the honest intentions of its developer.

In this paper we present an executable specification in Maude [8] of CO2, a calculus for contract-
oriented computing [3]. Furthermore, we devise and implement a sound verification technique for
honesty. We start in § 2 by introducing a new model for contracts. Borrowing from other approaches

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Cagliari

https://core.ac.uk/display/54607459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to behavioural contracts [7, 4], ours are bilateral contracts featuring internal/external choices, and
recursion. We define and implement in Maude two crucial primives on contracts, i.e. compliance
and culpability testing, and we study some relevant properties.

In § 3 we present CO2 (instantiated with the contracts above), and an executable specification
of its semantics in Maude. In § 4 we formalise a weak notion of honesty, i.e. when a process P
is honest in a given context, and we implement and experiment with it through the Maude model
checker.

The main technical results follow in § 5, where we deal with the problem of checking honesty
in all possible contexts. To do that, we start by defining an abstract semantics of CO2, which
preserves the transitions of a participant A[P], while abstracting those of the context wherein
A[P] is run. Building upon the abstract semantics, we then devise an abstract notion of honesty
(α-honesty, Def. 5.6), which neglects the execution context. Theorem 5.7 states that α-honesty
correctly approximates honesty, and that — under certain hypotheses — it is also complete. We
then propose a verification technique for α-honesty, and we provide an implementation in Maude.
Some experiments have then been carried out; quite notably, our tool has allowed us to determine
the dishonesty of a supposedly-honest CO2 process appeared in [4] (see Ex. 5.12).

2 Modelling contracts

We model contracts as processes in a simple algebra, with internal/external choice and recursion.
Compliance between contracts ensures progress, until a successful state is reached. We prove that
our model enjoys some relevant properties. First, in each non-final state of a contract there is exactly
one participant who is culpable, i.e., expected to make the next move (Theorem 2.9). Furthermore,
a participant always recovers from culpability in at most two steps (Theorem 2.10).

Syntax. We assume a finite set of participant names (ranged over by A,B, . . .) and a denumerable
set of atoms (ranged over by a, b, . . .). We postulate an involution co(a), also written as ā, extended
to sets of atoms in the natural way. Def. 2.1 introduces the syntax of contracts. We distinguish
between (unilateral) contracts c, which model the promised behaviour of a single participant, and
bilateral contracts γ, which combine the contracts advertised by two participants.

Definition 2.1. Unilateral contracts are defined by the following grammar:

c, d ::=
�

i∈I ai ; ci
�� �

i∈I ai . ci
�� ready a.c

�� rec X. c
�� X

where (i) the index set I is finite; (ii) the “ready” prefix may appear at the top-level, only; (iii)
recursion is guarded.

Bilateral contracts γ are terms of the form A says c | B says d, where A �= B and at most
one occurrence of “ready” is present. The order of unilateral contracts in γ is immaterial, i.e.
A says c | B says d ≡ B says d | A says c.

An internal sum
�

i∈I ai ; ci allows to choose one of the branches ai ; ci, to perform the action
ai, and then to behave according to ci. Dually, an external sum

�
i∈I ai . ci allows to wait for the

other participant to choose one of the branches ai . ci, then to perform the corresponding ai and
behave according to ci. Separators ; and . allow for distinguishing singleton internal sums a ; c
from singleton external sums a . c. Empty internal/external sums are denoted with 0. We will only
consider contracts without free occurrences of recursion variables X.

Example 2.2. An online store A has the following contract: buyers can iteratively add items to
the shopping cart (addToCart); when at least one item has been added, the client can either cancel

2

A says (a ; c⊕ c�) | B says (ā . d+ d�)
A says a−−−−−→→ A says c | B says ready ā.d [IntExt]

A says ready a. c | B says d
A says a−−−−−→→ A says c | B says d [Rdy]

Figure 1: Semantics of contracts (symmetric rules for B actions omitted)

the order or pay; then, the store can accept (ok) or decline (no) the payment. Such a contract may
be expressed as cA below:

cpay = pay .
�
ok ; 0 ⊕ no ; 0

�

cA = addToCart . (rec Z. addToCart . Z + cpay + cancel . 0)

Instead, a buyer contract could be expressed as:

cB = rec Z.
�
addToCart ; Z ⊕ pay ; (ok . 0 + no . 0)

�

The Maude specification of the syntax of contracts is defined as follows:

sorts Atom UniContract Participant AdvContract BiContract
IGuarded EGuarded IChoice EChoice Var Id RdyContract .

subsort Id < IGuarded < IChoice < UniContract < RdyContract .
subsort Id < EGuarded < EChoice < UniContract < RdyContract .
subsort Var < UniContract .

The sorts IGuarded and EGuarded represent singleton internal/external sums, respectively, while
IChoice and EChoice are for arbitrary internal/external sums. Id represents empty sums, and it
is a subsort of internal and external sums (either singleton or not). RdyContract if for contracts
which may have a top-level ready , while AdvContract is a unilateral contract advertised by some
participant.

op -_ : Atom -> Atom [ctor] .
eq - - a:Atom = a:Atom .
op 0 : -> Id [ctor] .
op _._ : Atom UniContract -> EGuarded [frozen ctor] .
op _;_ : Atom UniContract -> IGuarded [frozen ctor] .
op _+_ : EChoice EChoice -> EChoice [frozen comm assoc id: 0 ctor] .
op _(+)_ : IChoice IChoice -> IChoice [frozen comm assoc id: 0 ctor] .
op ready _._ : Atom UniContract -> RdyContract [frozen ctor] .
op rec _._ : Var IChoice -> UniContract [frozen ctor] .
op rec _._ : Var EChoice -> UniContract [frozen ctor] .
op _ says _ : Participant RdyContract -> AdvContract [ctor] .
op _ | _ : AdvContract AdvContract -> BiContract [comm ctor] .

The operator - models the involution on atoms, with eq - - a:Atom = a:Atom. The other opera-
tors are rather standard, and they guarantee that each UniContract respects the syntactic constraints
imposed by Def. 2.1.

Semantics. The evolution of bilateral contracts is modelled by
µ−→→, the smallest relation closed

under the rules in Fig. 1 and under ≡. The congruence ≡ is the least relation including α-conversion
of recursion variables, and satisfying rec X. c ≡ c{rec X. c/X} and

�
i∈∅ ai ; ci ≡

�
i∈∅ ai . ci. The

label µ = A says a models A performing action a. Hereafter, we shall consider contracts up-to ≡.
In rule [IntExt], participant A selects the branch a in an internal sum, and B is then forced to

commit to the corresponding branch ā in his external sum. This is done by marking that branch with

3

ready ā, while discarding all the other branches; B will then perform his action in the subsequent
step, by rule [Rdy].

In Maude, the semantics of contracts is an almost literal translation of that in Fig. 1 (except
that labels are moved to configurations). The one-step transition relation is defined as follows:

crl [IntExt]: A says a ; c (+) c’ | B says b . d + d’
=> {A says a} A says c | B says ready b . d if a = - b .

rl [Rdy]: A says ready a.c | B says d => {A says a} A says c | B says d .

Compliance. Two contracts are compliant if, whenever a participant A wants to choose a branch
in an internal sum, then participant B always offers A the opportunity to do it. To formalise com-
pliance, we first define a partial function rdy from bilateral contracts to sets of atoms. Intuitively,
if the unilateral contracts in γ do not agree on the first step, then rdy(γ) is undefined (i.e. equal
to ⊥). Otherwise, rdy(γ) contains the atoms which could be fired in the first step.

Definition 2.3 (Compliance). Let the partial function rdy be defined as:

rdy
�
A says

�

i∈I
ai ; ci | B says

�

j∈J
bj . cj

�
= {ai}i∈I

if {ai}i∈I ⊆ {b̄j}j∈J
and (I = ∅ =⇒ J = ∅)

rdy(A says ready a.c | B says d) = {a}

Then, the compliance relation �� between unilateral contracts is the largest relation such that, when-
ever c �� d:

(1) rdy(A says c | B says d) �= ⊥

(2) A says c | B says d
µ−→→ A says c� | B says d� =⇒ c� �� d�

Example 2.4. Let γ = A says c | B says d, where c = a ; c1 ⊕ b ; c2 and d = ā . d1 + c̄ . d2.
If the participant A internally chooses to perform a, then γ will take a transition to A says c1 |
B says ready ā.d1. Suppose instead that A chooses to perform b, which is not offered by B in his

external choice. In this case, γ � A says b−−−−−→→. We have that rdy(γ) = ⊥, which does not respect item
(1) of Def. 2.3. Therefore, c and d are not compliant.

We say that a contract is proper if the prefixes of each summation are pairwise distinct. The
next lemma states that each proper contract has a compliant one.

Lemma 2.5. For all proper contracts c, there exists d such that c �� d.

Def. 2.3 cannot be directly exploited as an algorithm for checking compliance. Lemma 2.6 gives
an alternative, model-checkable characterisation of �� .

Lemma 2.6. For all bilateral contracts γ = A says c | B says d:

c �� d ⇐⇒ (∀γ�. γ −→→∗ γ� =⇒ rdy(γ�) �= ⊥)

In Maude, the compliance relation is defined as suggested by Lemma 2.6. The predicate isBottom
is true for a contract γ whenever rdy(γ) = ⊥. The operator <> used below allows for the transitive
closure of the transition relation. The relation c |X| d is implemented by verifying that the contract
A says c | B says d satisfies the LTL formula �¬ isBottom. This is done through the Maude model
checker.

4

eq <{l} g> |= isBottom = is rdy(g) eq bottom .
op _|X|_ : UniContract UniContract -> Bool .
eq c |X| d = modelCheck(<A says c | B says d>, [] ~isBottom) == true .

Example 2.7. Recall the store contract cA in Ex. 2.2. Its Maude version is:

op Z : -> Var .
ops addToCart pay ok no cancel : -> Atom .
ops CA CPay CB : -> UniContract .
eq CPay = pay . (- ok ; 0 (+) - no ; 0) .
eq CA = addToCart . (rec Z . addToCart . Z + CPay + cancel . 0) .

Instead, the Maude implementation of the buyer contract cB in Ex. 2.2 is:

eq CB = rec Z . (- addToCart ; Z (+) - pay ; (ok . 0 + no . 0)) .

We can verify with Maude that CA and CB are not compliant:

red CA |X| CB .
result Bool: false

The problem is that CB may choose to pay even when the cart is empty. We can easily fix the buyer
contract as follows, and then obtain compliance:

red CA |X| (- addToCart ; CB) .
result Bool: true

Culpability We now tackle the problem of determining who is expected to make the next step
for the fulfilment of a bilateral contract. We call a participant A culpable in γ if she is expected to
perform some actions so to make γ progress.

Definition 2.8. A participant A is culpable in γ (A ˙�̇γ in symbols) iff γ
A says a−−−−−→→ for some a.

When A is not culpable in γ we write A ˙�̇γ.

Theorem 2.9 below establishes that, when starting with compliant contracts, exactly one partic-
ipant is culpable in a bilateral contract. The only exception is A says 0 | B says 0, which represents
a successfully terminated interaction, where nobody is culpable.

Theorem 2.9. Let γ = A says c | B says d, with c �� d. If γ −→→∗ γ�, then either γ� = A says 0 |
B says 0, or there exists a unique culpable in γ�.

The following theorem states that a participant is always able to recover from culpability by
performing some of her duties. This requires at most two steps.

Theorem 2.10 (Contractual exculpation). Let γ = A says c | B says d. For all γ� such that
γ −→→∗ γ�, we have that:

(1) γ� �−→→ =⇒ A ˙�̇γ� and B ˙�̇γ�

(2) A ˙�̇γ� =⇒ ∀γ��.γ� −→→ γ�� =⇒
�
A ˙�̇γ��, or

∀γ���.γ�� −→→ γ��� =⇒ A ˙�̇γ���

Item (1) of Theorem 2.10 says that, in a stuck contract, no participant is culpable. Item (2)
says that if A is culpable, then she can always exculpate herself in at most two steps, i.e.: one step
if A has an internal choice, or a ready followed by an external choice; two steps if A has a ready
followed by an internal choice.

We specify culpability in Maude as follows. The formula {l} g |= --A-->> is true whenever
g has been reached by some transitions of A. The participant A is culpable in g, written A :C g,
if g satisfies the LTL formula O --A-->> (where O is the “next” operator of LTL). This is verified
through the Maude model checker.

5

commutative monoidal laws for | on processes and systems

A[(v)P] ≡ (v)A[P] Z | (u)Z� ≡ (u)(Z | Z�) if u �∈ fv(Z) ∪ fn(Z)

(u)(v)Z ≡ (v)(u)Z (u)Z ≡ Z if u �∈ fv(Z) ∪ fn(Z) {↓s c}A ≡ 0

Figure 2: Structural equivalence for CO2 (Z,Z � range over systems or processes).

op --_->> : Participant -> Prop .
eq {A says a} g |= -- A ->> = true .
eq {l} g |= -- A ->> = false [owise] .
op _ :C _ : Participant BiContract -> Bool .
eq A :C g = modelCheck(g, O -- A ->>) == true .

3 Modelling contracting processes

We model agents and systems through the process calculus CO2 [2], which we instantiate with the
contracts introduced in § 2. The primitives of CO2 allow agents to advertise contracts, to open
sessions between agents with compliant contracts, to execute them by performing some actions,
and to query contracts.

Syntax. Let V and N be disjoint sets of session variables (ranged over by x, y, . . .) and session
names (ranged over by s, t, . . .). Let u, v, . . . range over V ∪N , and �u,�v range over 2V∪N .

Definition 3.1. The syntax of CO2 is given as follows:

Systems S ::= 0
�� A[P]

�� s[γ]
�� S | S

�� (u)S
�� {↓u c}A

Processes P ::=
�

i πi.Pi

�� P | P
�� (u)P

�� X(�u)

Prefixes π ::= τ
�� tell ↓u c

�� dou a
�� askuφ

Systems are the parallel composition of participants A[P], delimited systems (u)S, sessions s[γ]
and latent contracts {↓u c}A. A latent contract {↓x c}A represents a contract c (advertised by
A) which has not been stipulated yet; upon stipulation, the variable x will be instantiated to a
fresh session name. We assume that, in a system of the form (�u)(A[P] | B[Q]) | · · ·), A �= B.
We denote with K a special participant name (playing the role of contract broker) such that, in
each system (�u)(A[P] | · · ·), A �= K. We allow for prefix-guarded finite sums of processes, and
write π1.P1 + π2.P2 for

�
i∈{1,2} πi.Pi, and 0 for

�
∅ P . Recursion is allowed only for processes;

we stipulate that each process identifier X has a unique defining equation X(x1, . . . , xj)
def
= P such

that fv(P) ⊆ {x1, . . . , xj} ⊆ V, and each occurrence of process identifiers in P is prefix-guarded.
We will sometimes omit the arguments of X(�u) when they are clear from the context.

Prefixes include silent action τ , contract advertisement tell ↓u c, action execution dou a, and
contract query asku φ (where φ is an LTL formula on γ). In each prefix π �= τ , u refers to the target
session involved in the execution of π.

In Maude, we translate the syntax of CO2 almost literally. Here we just show the sorts used;
see § C for the full details.

sorts System Process Prefix SessionName SessionVariable SessionIde
GuardProc Sum IdeVec ProcIde ParamList .

subsort SessionName < SessionIde < IdeVec .
subsort Qid < SessionVariable < SessionIde < IdeVec .
subsort GuardProc < Sum < Process .
subsort SessionIde < ParamList .

6

A[τ.P + P � | Q]
A: τ−−−→ A[P | Q] [Tau]

A[tell ↓u c.P + P � | Q]
A: tell ↓uc−−−−−−→ A[P | Q] | {↓u c}A [Tell]

c �� d γ = A says c | B says d σ = {s/x,y} s fresh

(x, y)(S | {↓x c}A | {↓y d}B) K: fuse−−−−→ (s)(Sσ | s[γ])
[Fuse]

γ
A says a−−−−−→→ γ�

A[dos a.P + P � | Q] | s[γ]
A: dos a−−−−−→ A[P | Q] | s[γ�]

[Do]

γ � φ

A[asks φ.P + P � | Q] | s[γ]
A: asks φ−−−−−→ A[P | Q] | s[γ]

[Ask]

X(�u)
def
= P A[P{�v/�u} | Q] | S µ−→ S�

A[X(�v) | Q] | S µ−→ S� [Def]
S

µ−→ S�

S | S�� µ−→ S� | S�� [Par]

S
A: π−−−→ S�

(u)S
A: delu(π)−−−−−−→ (u)S�

[Del] where delu(π) =

�
τ if u ∈ fnv(π)

π otherwise

Figure 3: Reduction semantics of CO2 .

The sort SessionIde is a super sort of both SessionVariable and SessionName. Session variables
can be of sort Qid; session names can not. Sort IdeVec models sets of SessionIde (used as syntactic
sugar for delimitations), while ParamList models vectors of SessionIde (used for parameters of
defining equations).

Semantics. The CO2 semantics is formalised by the relation
µ−→ in Fig. 3, where

µ ∈ {A : π | A �= K} ∪ {K : fuse}

We will consider processes and systems up-to the congruence relation ≡ in Fig. 2. The axioms for
≡ are fairly standard — except the last one: it collects garbage terms possibly arising from variable
substitutions.

Rule [Tau] just fires a τ prefix. Rule [Tell] advertises a latent contract {↓x c}A. Rule [Fuse] finds
agreements among the latent contracts: it happens when there exist {↓xc}A and {↓yd}B such that
A �=B and c��d. Once the agreement is reached, a fresh session containing γ = A says c | B says d is
created. Rule [Do] allows a participant A to perform an action in the session s containing γ (which,
accordingly, evolves to γ�). Rule [Ask] allows A to proceed only if the contract γ at session s satisfies
the property φ. The last three rules are mostly standard. In rule [Del] the label π fired in the premise
becomes τ in the consequence, when π contains the delimited name/variable. This transformation
is defined by the function delu(π), where the set fnv(π) contains the free names/variables in π. For

instance, (x)A[tell ↓x c.P]
A: τ−−−→ (x) (A[P] | {↓x c}A). Here, it would make little sense to have the

label A : tell ↓x c, as x (being delimited) may be α-converted.
Implementing in Maude the semantics of CO2 is almost straightforward [18]; here we show

only the main rules (see § C for the others). Rule [Do] uses the transition relation => on bilateral
contracts. Rule [Ask] exploits the Maude model checker to verify if the bilateral contract g satisfies
the LTL formula phi. Rule [Fuse] uses the operator |X| to check compliance between the contracts

7

c and d, then creates the session s[A says c | B says d] (with s fresh), and finally applies the
substitution {s / x}{s / y} (delimitations are dealt with as in Fig. 3).

crl [Do] : A[do s a . P + P’ | Q] | s[g] => {A : do s a} (A[P | Q] | s[g’])
if g => {A says a} g’ .

crl [Ask] : A[ask s phi . P + P’ | Q] | s[g] => {A : ask s phi} A[P | Q]
if g |- phi .

crl [Fuse] : (uVec , vVec) ({x c}A | {y d}B | S) => {K : fuse}
(s , vVec) (s[A says c | B says d] | S{s / x}{s / y})
if uVec == (x , y) / c |X| d / s := fresh(0 , S) .

4 Honesty

A remarkable feature of CO2 is that it allows for writing dishonest agents which do not keep their
promises. Intuitively, a participant is honest if she always fulfils her contractual obligations, in all
possible contexts. Below we formalise the notion of honesty, by slightly adapting the one appeared
in [2]. Then, we show how we verify in Maude a weaker notion, i.e. honesty in a given context.

We start by defining the set OA
s (S) of obligations of A at s in S. Whenever A is culpable at

some session s, she has to fire one of the actions in OA
s (S).

Definition 4.1. We define the set of atoms OA
s (S) as:

OA
s (S) =

�
a | ∃γ, S� . S ≡ s[γ] | S� and γ

A says a−−−−−→→
�

We say that A is culpable at s in S iff OA
s (S) �= ∅.

The set of atoms RDA
s (S) (“Ready Do”) defined below comprises all the actions that A can

perform at s in one computation step within S (note that, by rule [Del], if s is a bound name then
RDA

s (S) = ∅). The set WRDA
s (S) (“Weak Ready Do”) contains all the actions that A may possibly

perform at s after a finite sequence of transitions of A not involving any do at s.

Definition 4.2. For all S, A and s, we define the sets of atoms:

RDA
s (S) =

�
a | ∃S� . S

A: dos a−−−−−→ S�
�

WRDA
s (S) =

�
a | ∃S� . S

A: �=dos−−−−−→∗S� ∧ a ∈ RDA
s (S

�)
�

where we write S
A: �=dos−−−−−→ S� if ∃π. S A: π−−−→ S� ∧ ∀a. π �= dos a.

A participant is ready in a systemif she can fulfil some of her obligations. To check if A is
ready in S, we consider all the sessions s in S involving A. For each of them, we check that some
obligations of A at s are exposed after some steps of A not preceded by other dos of A. We can

now formalise when a participant is honest. Roughly, A[P] is honest in a given system S when A is
ready in all evolutions of A[P] | S. Then, A[P] is honest when she is honest in all systemsS.

Definition 4.3 (Honesty). We say that:

1. S is A-free iff it has no latent/stipulated contracts of A, nor processes of A

2. A is ready in S iff S ≡ (�u)S� ∧ OA
s (S

�) �= ∅ =⇒ WRDA
s (S

�) ∩OA
s (S

�) �= ∅

3. P is honest in S iff ∀A : (S is A-free ∧ A[P] | S −→∗ S�) =⇒ A is ready in S�

8

4. P is honest iff, for all S, P is honest in S

We have implemented items 2 and 3 of the above definition in Maude (item 4 is dealt with in
the next section). CO2 can simulate Turing machines [4], hence reachability in CO2 is undecidable,
and consequently WRD, readiness and honesty are undecidable as well. To recover decidability, we
then restrict to finite state processes: roughly, these are the processes with neither delimitations
nor parallel compositions under process definitions.

In Maude we verify readiness in a session s by searching if A can reach (with her moves only),
a state which allows for a dos a move, for some a.

op ready? : Participant SessionName System Module -> Bool .
eq ready?(A,s,S,M:Module) = metaSearch(M:Module, upTerm(< S > A s),

’<_>__[’S1:System , upTerm(A) , upTerm(s)],
’S1:System => ’‘_‘_[’l:SLabel,’S2:System] /\
’_:_[upTerm(A),’do__[upTerm(s),’a:Atom]] := ’l:SLabel,
’*, unbounded, 0) =/= failure .

We start the search from the term < S > A s, whose meta-representation is obtained through the
upTerm function. The search is performed according to the A-solo semantics of CO2 (see Defini-
tion 5.3), which blocks all do at s. This is done by the operator < > . Then, we look for reachable
systems S1 where A can fire a do at s. If the search succeeds, ready? returns true. Note that if A
has no obligations at s in S, ready? returns false — uncoherently with Def. 4.3. To correctly check
readiness, we define the function ready (see § C), which invokes ready? only when OA

s(S) �= ∅.
Verifying honesty in a context is done similarly. We use metaSearch to check that A is ready in

all reachable states. The operator < > gives the CO2 semantics.

op search-honest-ctx : Participant System Module -> ResultTriple? .
eq search-honest-ctx(A,S,M:Module) = metaSearch(M:Module, upTerm(< S >),
’<_>[’S:System], ’ready[upTerm(A), ’S:System,’S:System, upTerm(M:Module)]
= ’false.Bool, ’*, unbounded, 0) .

op honest-ctx : Participant System Module -> Result .
ceq honest-ctx (A , S , M:Module) = true
if search-honest-ctx (A , S , M:Module) == failure .

ceq honest-ctx (A , S , M:Module) = downTerm (T:Term , < (0).System >)
if {T:Term,Ty:Type,S:Substitution} := search-honest-ctx (A,S,M:Module) .

Example 4.4. A travel agency A queries in parallel an airline ticket broker F and a hotel reservation
service H in order to organise a trip for some user U. The agency first requires U to pay, and then
chooses either to commit the reservation or to issue a refund (contract CU). When querying the
ticket broker (contract CF), the agency first receives a quotation, and then chooses either to commit
and pay the ticket, or to abort the transaction. The contract CH between A and H is similar.

eq CU = pay . (commit ; 0 (+) refund ; 0) .
eq CF = ticket . (commitF ; payF ; 0 (+) abortF ; 0) .
eq CH = hotel . (commitH ; payH ; 0 (+) abortH ; 0) .

In addition to the contracts above, the agency should respect the following constraints: (a) the
agency refunds U only if both the transactions with F and H are aborted; (b) A pays the ticket and the
hotel reservation only after it has committed the transaction with U; (c) either both the transactions
with F or H are committed, or they are both aborted. A possible specification in Maude respecting
the above constraints is given by the following process P:

eq P = (xu , xf , xh) (tell xu CU . do xu pay .
((tell xf CF . PF) | (tell xh CH . PH) | PU)) .

eq PF = do xf ticket . (do xh commitH . 0 + do xf abortF . 0) .
eq PH = do xh hotel . (do xf commitF . 0 + do xh abortH . 0) .

eq PU = ask xh ([] ~ payH) . do xu refund . 0 +
t . do xu commit . (do xf payF . 0 | do xh payH . 0) .

9

The process P first opens a session with U, and then advertises the contracts CF and CH, and in
parallel executes PU. The process PF gets the ticket quotation, then either commits the hotel reserva-
tion, or aborts the flight reservation. Dually, PH gets the hotel quotation, then either commits the
flight reservation, or aborts the hotel reservation. Note that the two choices in PF and PH ensure
that constraint (c) above is satisfied: e.g., if PF fires the commitH (resp. abortF) prefix, the abortH

(resp. commitF) branch in PH is disabled, and only commitF (resp. abortH) can be selected. The pro-
cess PU checks if a refund is due to U. When the atom payH is no longer reachable in session xh, the
ask passes, and the refund is issued. This guarantees constraint (a). In the τ -branch, PU commits
the transaction with U, and then proceeds to pay both F and H. This satisfies constraint (b). Note
that it may happen that PU chooses to commit even when CF or CH are not stipulated. Although this
behaviour is conceptually wrong, it does not affect honesty. Indeed, honesty does not consider the
domain-specific constraints among actions (e.g. (a), (b), (c) above), but only that the advertised
contracts are respected.

We have experimented the function honest-ctx by inserting P in some contexts S where all the
other participants U, F and H are honest (see §B for details). The Maude model checker has correctly
determined that P is honest in S.

red honest-ctx(A , S , [’TRAVEL-AGENCY-CTX]) .
rewrites: 53950741 in 38062ms cpu (38058ms real) (1417429 rewrites/second)
result Bool: true

Even though we conjecture that P is honest (in all contexts), we anticipate here that the ver-
ification technique proposed in § 5 does not classify P as honest. This is because the analysis is
(correct but) not complete in the presence of ask: indeed, the precise behaviour of an ask is lost by
the analysis, because it abstracts from the contracts of the context.

Example 4.5. Consider the following contracts and processes:

c = a ; 0 d = ā . 0

P = (x) tell ↓x c. dox a Q = (y) tell ↓y d.X where X
def
= τ.X

We have the following (concrete) computation in the system S = A[P] | B[Q]:

S
A: τ−−−−→(x)(A[dox a] | B[Q] | {↓x c}A)
B: τ−−−−→(x, y)(A[dox a] | B[X] | {↓x c}A | {↓y d}B)

K: fuse−−−−→(s) (A[dos a] | B[X] | s[A says c | B says d]) = S� B: τ−−−→ S� B: τ−−−→ · · ·

In the above computation, an unfair scheduler prevents A from making her moves, and so A remains
persistently culpable in such computation. However, A is ready in S� (because the dos a is enabled),
and therefore P is honest according to Def. 4.3. This is coherent with our intuition about honesty:
an honest participant will always exculpate herself in all fair computations, but she might stay
culpable in the unfair ones, because an unfair scheduler might always give precedence to the actions
of the context.

5 Model checking honesty

We now address the problem of automatically verifying honesty. As mentioned in § 1, this is a
desirable goal, because it alerts system designers before they deploy services which could violate
contracts at run-time (so possibly incurring in sanctions). Since honesty is undecidable in general [4],
our goal is a verification technique which safely over-approximates honesty, i.e. it never classifies a

10

process as honest when it is not. The first issue is that Def. 4.3 requires readiness to be preserved in
all possible contexts, and there is an infinite number of such contexts. To overcome this problem, we
present below an abstract semantics of CO2 which preserves the honesty property, while neglecting
the actual context where the process A[P] is executed.

The definition of the abstract semantics of CO2 is obtained in two steps. First, we provide the
projections from concrete contracts/systems to the abstract ones. Then, we define the semantics of
abstract contracts and systems, and we relate the abstract semantics with the concrete one. The
abstraction is always parameterised in the participant A the honesty of which is under consideration.

The abstraction αA(γ) of a bilateral contract γ = A says c | B says d (Definition 5.1 below) is
either c, or ctx .c when d has a ready .

Definition 5.1. For all γ, we define the abstract contract αA(γ) as:

αA(A says c | B says d) =

�
c if d is ready-free

ctx a.c if d = ready a.d�

We now define the abstraction αA of concrete systems, which just discards all the components
not involving A, and projects the contracts involving A.

Definition 5.2. For all A, S we define the abstract system αA(S) as:

αA(A[P]) = A[P] αA(s[γ]) = s[αA(γ)] if γ = A says c | B says d

αA({↓x c}A) = {↓x c}A αA(S | S�) = αA(S) | αA(S
�)

αA((u)S) = (u)(αA(S)) αA(S) = 0, otherwise

Abstract semantics. We now introduce the semantics of abstract contracts and systems. For

all participants A, the abstract LTSs
�−→→A and

µ−→A on abstract contracts and systems, respectively,
are defined by the rules in Fig. 4. Labels � are atoms, with or without the special prefix ctx —
which indicates a contractual action performed by the context. Labels µ are either ctx or they have
the form A : π, where A is the participant in −→A, and π is a CO2 prefix.

Rules for abstract contracts (first row in Fig. 4) are simple: in an internal sum, A chooses a
branch; in an external sum, the choice is made by the context; in a ready a.c the atom a is fired.
The rightmost rule handles a ready in the context contract. For abstract systems, some rules are
similar to the concrete ones, hence we discuss only the most relevant ones. Rule [α-Do] involves the
abstract transitions of contracts. The behaviour of abstract systems also considers context actions,
labelled with ctx . If c � φ, then the ask φ passes, indepedently from the context (rule [α-Ask]). If
c �� ¬φ, then the ask φ may pass or not, depending and the context (rule [α-AskCtx]). The correctness
of these rules is guaranteed by Lemma 5.11. Rule [α-Fuse] says that a latent contract of A may
always be fused (the context may choose whether this is the case or not). The context may also
decide whether to perform actions within sessions ([α-DoCtx]). Unobservable context actions are
modelled by rules [α-Ctx] and [α-DelCtx].

To check if A[P] is honest, we must only consider those A-free contexts not already containing
advertised/stipulated contracts of A. Such systems will always evolve to a system which can be
split in two parts: an A-solo system SA containing the process of A, the contracts advertised by A
and all the sessions containing contracts of A, and an A-free system Sctx .

Definition 5.3. We say that a system S is A-solo iff one of the following holds:

S ≡ 0 S ≡ A[P] S ≡ s[A says c | B says d] S ≡ {↓x c}A
S ≡ S� | S�� where S� and S�� A-solo S ≡ (u)S� where S� A-solo

11

a ; c⊕ c�
a−→→A ctx ā.c a . c+ c�

ctx : ā−−−→→A ready a. c ready a. c
a−→→A c ctx a.c

ctx : a−−−→→A c

c
a−→→A c�

A[dos a.P + P � | Q] | s[c]
A: dos a−−−−−→A A[P | Q] | s[c�]

[α-Do]

s fresh

(x)(S̃ | {↓x c}A) ctx−−→A (s)(s[c] | S̃{s/x}) [α-Fuse]

c � φ

A[asks φ.P + P � | Q] | s[c]
A: asks φ−−−−−→A A[P | Q] | s[c]

[α-Ask]

c �� ¬φ
A[asks φ.P + P � | Q] | s[c]

ctx−−→A A[P | Q] | s[c]
[α-AskCtx]

c
ctx−−→→A c�

s[c]
ctx−−→A s[c�]

[α-DoCtx] S
ctx−−→A S [α-Ctx]

S̃
ctx−−→A S̃�

(u)S̃
ctx−−→A (u)S̃�

[α-DelCtx]

Figure 4: Abstract LTSs for contracts and systems (full set of rules in § B).

We say that S is A-safe iff S ≡ (�s)(SA | Sctx), with SA A-solo and Sctx A-free.

The following theorems establish the relations between the concrete and the abstract semantics
of CO2. Theorem 5.4 states that the abstraction is correct, i.e. for each concrete computation
there exists a corresponding abstract computation. Theorem 5.5 states that the abstraction is also
complete, provided that a process has neither ask nor non-proper contracts.

Theorem 5.4. For all A-safe systems S, and for all concrete traces η:

S
η−→∗S� =⇒ ∃η̃ : αA(S)

η̃−→A
∗αA(S

�)

Furthermore, if η is A-solo and S is ask-free, then η = η̃.

Theorem 5.5. For all ask-free abstract system S̃ with proper contracts only:

S̃ −→A
∗ S̃� =⇒ ∃S, S� A-safe. αA(S) = S̃ ∧ S −→∗ S� ∧ αA(S

�) = S̃�

The abstract counterparts of Ready Do, Weak Ready Do, and readiness are defined as expected,
by using the abstract semantics instead of the concrete one (see §B for details). The notion of
honesty for abstract systems, namely α-honesty, follows the lines of that of honesty in Def. 4.3.

Definition 5.6 (α-honesty). We say that P is α-honest iff for all S̃ such that A[P] −→A
∗ S̃, A is

ready in S̃.

The main result of this paper follows. It states that α-honesty is a sound approximation of
honesty, and — under certain conditions — it is also complete.

Theorem 5.7. If P is α-honest, then P is honest. Conversely, if P is honest, ask-free, and has
proper contracts only, then P is α-honest.

In Maude, we implement abstract semantics for system and contracts for one-step transitions.
We obtain their transitive closure, discarding labels, with the operator < >. The function ready in
search-honest computes abstract readiness.

12

op search-honest : Process Module -> ResultTriple? .
eq search-honest(P , M:Module) = metaSearch(M:Module, upTerm(< A[P] >),

’<_>[’S:System], ’ready[’S:System,’S:System, upTerm(M:Module)]
= ’false.Bool, ’*, unbounded, 0) .

op honest : Process Module -> Result .
ceq honest (P, M:Module) = true if search-honest (P,M:Module) == failure .
ceq honest (P, M:Module) = downTerm (T:Term , < (0).System >)

if {T:Term, Ty:Type, S:Substitution} := search-honest (P , M:Module) .

Honesty is checked by searching for states such that A is not ready. If the search fails, then
A is honest. As in § 4, this function is decidable for finite state processes, i.e. those without
delimitation/parallel under process definitions.

On the verification of ask We now formalise the meaning of the relation � used in the concrete
and abstract semantics of ask . Let A be the set of atoms, and let ε �∈ A. Let a, b, · · · range over
A ∪ {ε}. In the following all γ are assumed to be compositions of compliant unilateral contracts.

Definition 5.8. We define the (unlabelled) transition system TS = (Σ,→, I,A, L) as follows:

• S = {(a, γ) | γ is a bilateral contract and a ∈ A ∪ {ε}},
• I = {(a, γ) ∈ S | a = ε}
• the transition relation →⊆ S × S is defined by the following rule:

(b, γ) → (a, γ�) if γ
A says a−−−−−→→ γ�

• the labelling function L : S → A ∪ {ε} is defined as L((a, γ)) = a.

Definition 5.9. We define the (unlabelled) transition system �TS = (Σ,→ , I,A, L) as follows:

• S = {(a, c̃) | c̃ is an abstract contract and a ∈ A ∪ {ε}},
• I = {(a, c̃) ∈ S | a = ε}
• the transition relation →⊆ S × S is defined by the following rule:

(b, c̃) → (a, c̃�) if c
a−→→A c� ∨ c̃

ctx :a−−−→→A c̃�

• the labelling function L : S → A ∪ {ε} is defined as L((a, c̃)) = a.

Definition 5.10. We define the set Paths(s0) of maximal traces from a state s0 as:

{L(s0)L(s1) · · · | ∀i > 0. si−1 → si} ∪ {L(s0) · · ·L(sn) | (∀i ∈ 1..n. si−1 → si) ∧ sn �→}
Then, we write:

• γ � φ whenever ∀π ∈ Paths((�, γ)). π |= φ in LTL.

• c̃ � φ whenever ∀π ∈ Paths((�, c̃)). π |= φ in LTL.

Lemma 5.11 below guarantees the correctness of the abstract semantics of ask. Item (1) shows
the correctness of rule [α-ask]: if c̃ � φ, then the rule allows for a transition of A, and then by
Lemma 5.11 we know that ask φ will pass in each possible concrete context. Rule [α-askCtx] allows
the context to fire the ask φ only if c̃ �� ¬φ. Item (2) of Lemma 5.11 shows that this condition is
correct, because whenever the ask φ may pass in some concrete context, then c̃ �� ¬φ holds.

Lemma 5.11. For all abstract contracts c̃ and for all LTL formulae φ:

(1) c̃ � φ ⇐⇒ ∀γ . αA(γ) = c̃ =⇒ γ � φ

(2) ∃γ . αA(γ) = c̃ ∧ γ � φ =⇒ c̃ �� ¬φ

13

Experiments

The following example shows a process which was erroneously classified as honest in [4]. The Maude
model checker has determined the dishonesty of that process, and by exploiting the Maude tracing
facilities we managed to fix it.

Example 5.12. A store A offers buyers two options: clickPay or clickVoucher. If a buyer B chooses
clickPay, A requires a payment (pay) otherwise A checks the validity of the voucher with V, an online
voucher distribution system. If V validates the voucher (ok), B can use it (voucher), otherwise (no)
B must pay. We specify in Maude the contracts CB (between A and B) and CV (between A and V) as:

eq CB = clickPay . pay . 0 +
clickVoucher . (- reject ; pay . 0 (+) - accept ; voucher . 0) .

eq CV = ok . 0 + no . 0 .

We can specify in Maude a CO2 process for A as follows:

eq P = (x)(tell x CB . (do x clickPay . do x pay . 0 +
do x clickVoucher . ((y) tell y CV . Q))) .

eq Q = do y ok . do x - accept . do x voucher . 0 +
do y no . do x - reject . do x pay . 0 + R .

eq R = t . (do x - reject . do x pay . 0) .

Variables x and y in P correspond to two separate sessions, where A respectively interacts with B and
V. The advertisement of CV causally depends on the stipulation of the contract CB, because A must
fire clickVoucher before tell y CV. In process Q the store waits for the answer of V: if V validates
the voucher (first branch), then A accepts it from B; otherwise (second branch), A requires B to pay.
The third branch R allows A to fire a τ action, and then reject the voucher. The intuition is that τ
models a timeout, to deal with the fact that CV might not be stipulated. When we check the honesty
of P with Maude, we obtain:

red honest(P , [’STORE-VOUCHER]) .
rewrites: 31649 in 72ms cpu (77ms real) (439545 rewrites/second)
result TSystem: < ($ 0,$ 1)(A[do $ 0 - reject . do $ 0 pay . (0).Sum] |
$ 0[- accept ; voucher . 0(+)- reject ; pay . 0] | $ 1[ready ok . 0]) >

This means that the process P is dishonest: actually, the output provides a state where A is not
ready. There, A must do ok in session y ($1), while A is only ready to do a -reject at session x
($0). This problem occurs when the branch R is chosen. To recover honesty, it suffices to replace R

with the following process R’:

eq R’ = t . (do x - reject . do x pay . 0 | (do y no . 0 + do y ok . 0)) .
red honest(P’ , [’STORE-VOUCHER]) .
rewrites: 44009 in 32ms cpu (30ms real) (1375195 rewrites/second)
result Bool: true

Example 5.13. Recall the contract of the store in Example 2.7. A possible specification of the
store is the following one:

eq PA = (x) (tell x CA . do x addToCart . X(x)) .
eq PPay = do x pay . (t . do x - ok . 0 + t . do x - no . 0) .
eq env = (X(x) =def do x addToCart . X(x) + PPay + do x cancel . 0) .

The process PA first advertises the contract CA, and when the session x is created, it waits that the
user performs the first addToCart. Then, the store enters a recursive process X. In the body of X, the
store accepts three actions from the user: an addToCart, which is followed by a recursive call to X, a
cancel, which terminates the store process, or a pay from the user, which is handled by the process
PPay. Within PPay, after the payment is received the store internally chooses whether to accept it or
not, by firing the actions - ok or - no, respectively.

The Maude model checker correctly classifies the process PA as honest:

14

red honest(PA , [’STORE-CART]) .
rewrites: 2895 in 40ms cpu (39ms real) (72371 rewrites/second)
result Bool: true

Example 5.14. Consider an on-line food store A, which sells apples (a) and bottles of an expensive
italian Brunello wine (b). Selling apples is quite easy: once an order is placed, A accepts it (with
the feedback - ok) and waits for a payment (pay) before shipping the goods (- ship-a). However,
if expensive bottles of Brunello are ordered, the store is entitled to either decline the order (by
answering - no), or accept it (and, as above, ship the item after the payment).

The store contract can be modelled in Maude as follows:

eq CA = a . - ok ; pay . - ship-a ; 0 +
b . (- no ; 0 (+) - ok ; pay . - ship-b ; 0) .

and a possible specification of the store A is:

eq ship-a? = <> (- ship-a) .
eq PA = (x) (tell x CA . do x a . X(x) + do x b . X(x)) .
eq env = (X(x) =def do x - ok . do x pay . ask x ship-a? . do x - ship-a . 0) .

Here, A creates a private channel x, and advertises the contract CA. Once the session at x is initiated,
PA can accept an order for a or b on x. In both cases, the process X(x) is invoked. There, A accepts
the transaction with ok, and waits for payment. Then A checks whether the contract requires to ship
apples: if the query ask x ship-a? passes, the goods are shipped. Otherwise, when the customer
B orders Brunello, A maliciously gets stuck, and so B has paid for nothing. Clearly, this store is
dishonest, as it does not respect its own contract CA. The Maude model checker gives:

red honest(PA , [’FOOD-STORE-MALICIOUS]) .
rewrites: 1433 in 20ms cpu (20ms real) (71646 rewrites/second)
result TSystem: < ($ 0)(A[do $ 0 a . X($ 0)] | $ 0[ready b . (- ok ; pay . -

ship-b ; 0(+)- no ; 0)]) >

At session $ 0 (i.e., x), the store A must perform a b (because of the ready b), while the process of
A is only ready to perform an a.

Consider now a non-malicious implementation of the store. Here, before accepting orders the
store requires an insurance to cover shipment damages. — which may be particularly useful for the
expensive (and fragile) Brunello bottles. The contract between A and the insurance company is:

eq CI = - payI . (- cover ; 0 (+) - cancel ; 0) .

There, A promises to pay (payI) and then choose between getting the coverage, or cancelling the
request. The new specification of the store process is:

eq PA = (x , y) (tell y CI . do y - payI . tell x CA .
(do x a . do x - ok . X(x) + do x b . Y(x ; y))) .

eq env = (
X(x) =def do x pay . (do x - ship-a . 0 + do x - ship-b . 0)
&
Y(x ; y) =def do y - cover . (do x - ok . X(x) + t . do x - no . 0)

) .

The store A first requests an insurance by advertising CI. Once an insurance company C agrees, A
pays the premium (on channel y), and then advertises CA; once an agreement with a customer B is
reached, A waits for a or b orders. If apples are requested, A acknowledges (- ok) and invokes X(x);
there, A waits for payment, checks which good has to be shipped, and actually ships it. Otherwise, if
Brunello is requested, Y(x,y) is invoked: there, A requests the insurance coverage paid in advance;
then, either the order is accepted and X(x) is invoked for payment and shipment (as above), or the
transaction is declined after an internal τ -action (e.g. a wake up after a timeout).

When we check PA for honesty, we obtain:

15

red honest(PA , [’FOOD-STORE-NAIVE]) .
rewrites: 9377 in 20ms cpu (23ms real) (468803 rewrites/second)
result TSystem: < (x,$ 0)(A[tell x (a . - ok ; pay . - ship-a ; 0 + b . (- ok ;

pay . - ship-b ; 0(+)- no ; 0)) . (do x a . do x - ok . X(x) + do x b . Y(x
; $ 0))] | $ 0[- cover ; 0(+)- cancel ; 0]) >

The specification of PA does not seem malicious: however, it is keen to ship the goods, but it is
not honest either due to the interaction between A and the insurance company. Actually, if C does
not execute cover, then A gets stuck on do y - cover, unable to honour CA by providing the expected
ok or no. Furthermore, A is dishonest w.r.t. CI: the premium is paid in advance, but A may never
perform do y - cover nor do y - cancel — e.g. if no agreement on CA is found, or if the customer
B is stuck, or if B simply chooses to buy apples. Thus, due to implementation näıveties, A may be
blamed due to the unexpected (or malicious) behaviour of other participants.

Finally, a honest implementation of the food store is the following:

eq PA = (x) (tell x CA . (do x a . X(x) + do x b . Y(x))) .

eq env = (
X(x) =def do x - ok . do x pay . (ask x (O - ship-a) . do x - ship-a . 0

+ ask x (O - ship-b) . do x - ship-b . 0)
&
Y(x) =def (y) (tell y CI . do y - payI . 0 |

(do y - cover . X(x) + t . (do x - no . 0 | do y - cancel . 0)))
) .

Indeed, the Maude model checker gives:

red honest(PA , [’FOOD-STORE-HONEST]) .
rewrites: 35872 in 48ms cpu (48ms real) (747286 rewrites/second)
result Bool: true

6 Conclusions

We have described an executable specification in Maude of a calculus for contract-oriented systems.
This has been done in two steps. First, we have specified a model for contracts, and we have
formalised in Maude their semantics, and the crucial notions of compliance and culpability (§ 2).
This specification has been exploited in § 3 to implement in Maude the calculus CO2 [3]. Then, we
have considered the problem of honesty [4], i.e. that of deciding when a participant always respects
the contracts she advertises, in all possible contexts (§ 4). Writing honest processes is not a trivial
task, especially when multiple sessions are needed for realising a contract (see e.g. Ex. 4.4 and
Ex. 5.12). We have then devised a sound verification technique for deciding when a participant is
honest, and we have provided an implementation of this technique in Maude (§ 5).

Related work. Rewriting logic [11] has been successfully used for more than two decades as
a semantic framework wherein many different programming models and logics are naturally for-
malised, executed and analysed. Just by restricting to models for concurrency, there exist Maude
specifications and tools for CCS [16], the π-calculus [15], Petri nets [14], Erlang [13], Klaim [17],
adaptive systems [6], etc. A more comprehensive list of calculi, programming languages, tools and
applications implemented in Maude is collected in [12].

The contract model presented in § 2 is a refined version of the one in [4], which in turn is
an alternative formalisation of the one in [7]. Our version is simpler and closer to the notion of
session behaviour [1], and enjoys several desirable properties. Theorem 2.9 establishes that only one
participant may be culpable in a bilateral contract, whereas in [4] both participants may be culpable,
e.g. in A says a ; c | B says ā ; d. In our model, if both participants have an internal (or external)

16

choice, then their contracts are not compliant, whereas e.g. a.c and ā.d (both external choices)
are compliant in [4, 7] whenever c and d are compliant. The exculpation property established by
Theorem 2.10 is stronger than the corresponding one in [4]. There, a participant A is guaranteed
to exculpate herself by performing (at most) two consecutive actions of A, while in our model two
any actions (of whatever participant) suffice.

As far as we know, the concept of contract-oriented computing (in the meaning used in this pa-
per) has been introduced in [5]. CO2, a contract-agnostic calculus for contract-oriented computing,
has been instantiated with several contract models — both bilateral [4, 2] and multiparty [10, 3].
Here we have instantiated it with the contracts in § 2. A minor difference w.r.t. [4, 2, 10] is that here
we no longer have fuse as a language primitive, but rather the creation of fresh sessions is performed
non-deterministically by the context (rule [Fuse]). This is equivalent to assume a contract broker
which collects all contracts, and may establish sessions when compliant contracts are found. In [4],
a participant A is considered honest when, in each possible context, she can always exculpate herself
by a sequence of A-solo moves. Here we require that A is ready (i.e. some of her obligations are in
the Weak Ready Do set) in all possible contexts, as in [2]. We conjecture that these two notions are
equivalent. In [2] a type system has been proposed to safely over-approximate honesty. The type
of a process P is a function which maps each variable to a channel type. These are behavioural
types (in the form of Basic Parallel Processes) which essentially preserve the structure of P , by
abstracting the actual prefixes as “non-blocking” and “possibly blocking”. The type system relies
upon checking honesty for channel types, but no actual algorithm is given for such verification,
hence type inference remains an open issue. In contrast, here we have directly implemented in
Maude a verification algorithm for honesty, by model checking the abstract semantics in § 5.

Acknowledgments. This work has been partially supported by Aut. Region of Sardinia under
grants L.R.7/2007 CRP-17285 (TRICS) and P.I.A. 2010 project “Social Glue”, and by MIUR
PRIN 2010-11 project “Security Horizons”, and by EU COST Action IC1201 “Behavioural Types
for Reliable Large-Scale Software Systems” (BETTY).

References

[1] F. Barbanera and U. de’Liguoro. Two notions of sub-behaviour for session-based client/server
systems. In PPDP, 2010.

[2] M. Bartoletti, A. Scalas, E. Tuosto, and R. Zunino. Honesty by typing. In FMOODS/FORTE,
volume 7892 of LNCS, 2013.

[3] M. Bartoletti, E. Tuosto, and R. Zunino. Contract-oriented computing in CO2. Sci. Ann.
Comp. Sci., 22(1), 2012.

[4] M. Bartoletti, E. Tuosto, and R. Zunino. On the realizability of contracts in dishonest systems.
In COORDINATION, volume 7274 of LNCS, 2012.

[5] M. Bartoletti and R. Zunino. A calculus of contracting processes. In LICS, 2010.

[6] R. Bruni, A. Corradini, F. Gadducci, A. Lluch-Lafuente, and A. Vandin. Modelling and
analyzing adaptive self-assembly strategies with Maude. In WRLA, volume 7571 of LNCS,
2012.

[7] G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for web services. ACM
Transactions on Programming Languages and Systems, 31(5), 2009.

17

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F. Quesada.
Maude: Specification and programming in rewriting logic. TCS, 2001.

[9] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for
structured communication-based programming. In ESOP, volume 1381 of LNCS, 1998.

[10] J. Lange and A. Scalas. Choreography synthesis as contract agreement. In ICE, 2013.

[11] J. Meseguer. Rewriting as a unified model of concurrency. In CONCUR, volume 458 of LNCS,
1990.

[12] J. Meseguer. Twenty years of rewriting logic. JLAP, 81(7-8), 2012.

[13] M. Neuhäußer and T. Noll. Abstraction and model checking of core Erlang programs in Maude.
ENTCS, 176(4), 2007.

[14] M.-O. Stehr, J. Meseguer, and P. C. Ölveczky. Rewriting logic as a unifying framework for
Petri nets. In Unifying Petri Nets, 2001.

[15] P. Thati, K. Sen, and N. Mart́ı-Oliet. An executable specification of asynchronous pi-calculus
semantics and may testing in Maude 2.0. ENTCS, 71, 2002.

[16] A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. ENTCS, 71, 2002.

[17] M. Wirsing, J. Eckhardt, T. Mühlbauer, and J. Meseguer. Design and analysis of cloud-based
architectures with KLAIM and Maude. In WRLA, volume 7571 of LNCS, 2012.

[18] T. F. Şerbănuţă, G. Roşu, and J. Meseguer. A rewriting logic approach to operational seman-
tics. Information and Computation, 207(2):305 – 340, 2009.

18

