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Abstract. In the present paper we consider a heterogeneous model for the dynamics of a
blood solute both in the vascular lumen and inside the arterial wall. In the lumen, we consider an
advection-diffusion equation, where the convective field is provided by the velocity of blood, which
is in turn obtained by solving the Navier–Stokes equations. Inside the arterial wall we consider a
pure diffusive dynamics. Since the endothelial layer at the interface between the lumen and the
wall acts as a permeable membrane, whose permeability depends on the shear rate exerted by the
blood, the solute concentration is discontinuous across this membrane. A possible approach for
the numerical study of this kind of problem is inspired by domain decomposition techniques. In
particular, we introduce a splitting in the computation and alternate the solution of the advection-
diffusion equation in the lumen with that of the diffusion equation in the wall. We set up an efficient
iterative method, based on a suitable reformulation of the problem in terms of a Steklov–Poincaré
interface equation. This formulation is a nonstandard one because of the concentration discontinuity
at the lumen-wall interface and plays a key role in the proof of convergence of our method. In
particular, we prove that the convergence rate performed by the proposed method is independent
of the finite element space discretization and provides a criterion for the selection of an acceleration
parameter.

Several numerical results, referred to as biomedical applications, support our theoretical conclu-
sions and illustrate the efficiency of this algorithm.
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1. Introduction. We consider the numerical treatment of a model for the dy-
namics of blood solutes which was introduced in [14]. This model is based on an
advection-diffusion equation describing the solute dynamics in the vascular lumen,
the convective field being provided by the blood velocity. This equation is coupled
with a pure diffusive model accounting for the solute dynamics inside the arterial
wall, where convection is negligible. The two subdomains (namely the lumen and
the wall) are physically separated by the endothelial layer, which acts as a selective
permeable membrane. The interface equation matching the two subproblems in fact
follows from the specific nature of this membrane. It is worthwhile noticing that, due
to the presence of this membrane, the two concentrations fail to match continuously
at the interface.
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The well posedness of this model, coupled with the Navier–Stokes equations for
the description of the blood velocity and pressure fields, has been analyzed in [14].
The interest for this problem stems from the consideration that, in some cases, the
cause of widespread pathologies of the vascular system has been related to specific
features of the blood flow in a diseased district as well as to the influence of the flow
pattern on the transfer processes of solutes between blood and walls (see, e.g., [1], [7],
[15], [2], [3]). In [2], [3], for example, a more complex physiological model has been
introduced; however, so far it has been tested only on simple two-dimensional (2D)
geometries. On the other hand, more realistic three-dimensional (3D) calculations
have been pursued in [7]; however, in this case the model does not include the arterial
wall as a domain, per se; rather it surrogates the artery wall by prescribing a Dirichlet
boundary condition for the concentration. In this paper, our aim is to set up efficient
numerical methods for solving heterogeneous problems featuring a discontinuous so-
lution. Although stemming from the specific application at hand, the interest of these
methods goes beyond it as they can be applied to any system of advection-diffusion
equations which models the transfer of mass between heterogeneous media through
permeable membranes.

In the numerical analysis of these kinds of problems, a monolithic solver is typ-
ically adopted. Our approach is based on domain decomposition methods, solving
alternatively the different problems in the different subdomains (iterative substruc-
turing approach). In such a way, the discontinuity at the interface is accounted for
naturally. The general theory underlying this approach has been developed in [13,
Chapters 1 and 4]. However, the discontinuity of the solution in this specific applica-
tion makes the convergence analysis of the method “nonstandard.” In particular, we
will focus on the choice of convenient preconditioned iterative techniques and the proof
of convergence in the very general and abstract framework provided by the Steklov–
Poincaré operator theory. In a forthcoming paper, we will consider the extension of
these techniques to the more realistic models considered in [2], [3].

The paper is organized as follows. In section 2 we provide a brief introduction
to the heterogeneous model and recall the well posedness results obtained in [14]. In
section 3 we provide a reinterpretation of the problem in terms of a Steklov–Poincaré
interface equation. This reformulation is not a mere extension of techniques adopted
in other contexts, due to the presence of discontinuous solutions. In section 4, we
introduce an iterative method for the solution of the problem by solving successively
the solute dynamics in the lumen and in the wall. Starting from the Steklov–Poincaré
reformulation of the interface problem, we show that this method can be regarded
as a particular Richardson preconditioned method for the interface problem. Then,
we carry out the convergence analysis of this method; we identify an optimal precon-
ditioner associated to it and propose various generalizations based on the (flexible)
preconditioned GMRES method.

The numerical results presented refer to biomedical applications and illustrate the
efficiency of our schemes (section 5).

1.1. Some notation. Let Ω ⊂ R
d (d = 2, 3) be a physical bounded domain and

x ∈ Ω. We denote by L2 (Ω) the Hilbert space of square integrable functions in Ω.
The scalar product in L2(Ω) is denoted by (·, ·) and the related norm by ‖·‖L2(Ω). The
space of essentially bounded functions in Ω is denoted by L∞ (Ω). The Sobolev space
of functions, whose first (distributional) derivatives belong to L2 (Ω), is denoted by
H1 (Ω) and its norm by ‖·‖H1(Ω).

If Σ ⊂ ∂Ω is open and nonempty, then the space of functions defined on Σ which
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are traces of functions belonging to H1(Ω) is indicated by H1/2(Σ). We recall (see
[5]) that the trace operator γ : H1 (Ω) → H1/2(Σ) is surjective and continuous and
there exists an injective, linear, and continuous map L : H1/2(Σ) → H1 (Ω) called
lifting such that λ = γLλ for all λ ∈ H1/2(Σ). In particular, denoting by φ a function
in H1(Ω) and γφ its trace on Σ, the following trace inequality holds:

∃βt > 0 : ‖γφ‖H1/2(Σ) ≤ βt‖φ‖H1(Ω) ∀φ ∈ H1/2(Σ).(1.1)

We denote by H1
Σ(Ω) the subspace of H1(Ω) of the functions that have null traces

on Σ. In particular, we adopt the usual notation H1
0 (Ω) = H1

∂Ω(Ω). In H1
Σ(Ω) the

following Poincaré inequality holds:

∃α > 0 : ‖φ‖L2(Ω) ≤ α‖∇φ‖L2(Ω) ∀φ ∈ H1
Σ(Ω).(1.2)

If Γ denotes a (d − 1)-dimensional manifold in Ω with Γ ∩ Σ 
= ∅, the trace of

u ∈ H1
Σ(Ω) on Γ belongs to a subspace of H1/2(Γ), usually denoted by H

1/2
00 (Γ). To

simplify our notation we will set Λ = H
1/2
00 (Γ), and Λ′ will denote its dual (see [5]).

We remark that if ζ is any positive function in L2(Σ), the following definition makes
sense:

(ρ, λ)ζ =

∫
Σ

ζρλ =
(√

ζλ,
√

ζρ
)

∀λ, ρ ∈ H1/2(Σ).(1.3)

Indeed, by the Sobolev embedding theorem, λ and ρ belong to L4(Σ); hence λρ belongs
to L2(Σ). Denoting by Lλ and Lρ any continuous lifting of λ and ρ from Σ to Ω, it
follows that∣∣∣(ρ, λ)ζ∣∣∣ ≤ β2

e‖ζ‖L2(Σ)‖λ‖H1/2(Σ)‖ρ‖H1/2(Σ) ≤ β2‖Lλ‖H1(Ω)‖Lρ‖H1(Ω),(1.4)

with β2 = β2
eβ

2
t ‖ζ‖L2(Σ), where βe is the embedding constant of H1/2(Σ) in L4(Σ)

and βt is the constant of the trace inequality (1.1). Finally, we set

‖λ‖2ζ = (λ, λ)ζ = ‖
√

ζλ‖2L2(Σ).

For space-time functions v : Ω× (0, T )→ R, for all real q and s = 0, 1, we introduce
the space

Lq(0, T ;Hs(Ω)) ≡
{
v : (0, T )→ Hs| v(t) is measurable,

∫ T

0

‖v(t)‖qHs(Ω)dt <∞
}

endowed with the norm

‖v‖Lq(0,T ;Hs(Ω)) ≡
(∫ T

0

‖v(t)‖qHs(Ω)dt

)1/q

.

2. Problem formulation. Let us consider a specific vascular district Ω ⊂ R
d

(d = 2, 3), composed by a lumen or a fluid subdomain Ωf and a structure or wall
subdomain Ωw. Their interface Γ belongs to R

d−1 (see Figure 2.1).
The artificial sections delimiting the district proximally and distally with respect

to the heart will be denoted by Γup and Γdw, respectively. For x ∈ Ω and t > 0 we
denote by u (x, t) the velocity of the blood and by P (x, t) its pressure. Cf (x, t) and
Cw (x, t) denote the concentrations of the solute in the lumen Ωf and in the wall Ωw,
respectively. We assume the blood to be an incompressible Newtonian fluid (which is
a realistic assumption in large and medium vessels—see, e.g., [11]) within rigid walls.
Then, the blood motion is described by the Navier–Stokes incompressible equations,
obtained by the momentum and mass conservation principles. The initial-boundary
values problem we are going to consider for the blood dynamics therefore reads
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Fig. 2.1. Computational domain representing a 2D section of a vascular district featuring the
lumen Ωf and the wall Ωw.

ρ
∂u

∂t
+ ρ (u · ∇)u− ν∆u+∇P = f x ∈ Ωf , t > 0,

∇ · u = 0 x ∈ Ωf , t > 0,

u = b on Γf,up, t > 0, u = 0 on Γ, t > 0,

Pn− ρν∇u · n = Pextn on Γf,dw, t > 0,

u (x, t) = u0 with ∇ · u0 = 0, x ∈ Ωf , t = 0.

(2.1)

In (2.1) we suppose that the boundary ∂Ωf of the computational domain of the fluid
part of the problem is split into the interface with the wall Γ, the upstream or proximal
part Γf,up (where we prescribe the velocity field), and the downstream or distal one,
Γf,dw (where the normal fluid stress is assigned). We are also assuming that the
density of the blood ρb as well as the viscosity ν are constant; the physiological range
of these parameters is discussed in section 5.

The dynamics of solutes is described by an advection-diffusion process. In the
lumen, the convective field is provided by the blood velocity, while in the wall, because
of the very low velocity of the solvent, the advection is negligible (see [8]). The
interface Γ can be regarded as a permeable membrane whose permeability ζ is a
positive function of the shear stress σ exerted by the blood on the wall (see [15]). More
precisely, the solute flux through Γ is proportional to the difference of concentration
between lumen and wall. All these considerations lead to the following model for the
solute concentrations for all t > 0:

∂Cf

∂t
− µf∆Cf + u · ∇Cf = sf in Ωf ,

∂Cw

∂t
− µw∆Cw = sw in Ωw,

µf
∂Cf

∂nf
+ ζ (Cf − Cw) = 0 on Γ,

µw
∂Cw

∂nw
+ ζ (Cw − Cf ) = 0 on Γ,

Cf = Cf,up on Γf,up, Cw = Cw,up on Γw,up,

µf
∂Cf

∂nf
= 0 on Γf,dw, µw

∂Cw

∂nw
= 0 on Γw,dw.

(2.2)

To complete (2.2), we add the initial conditions

Cf (x, t) = Cf0(x), x ∈ Ωf , Cw(x, t) = Cw0(x), x ∈ Ωw, t = 0,
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where the diffusivity coefficients µf and µw are positive and constant and sf (x, t) and
sw(x, t) are possible source terms. In (2.2), we have denoted by Γw,up (Γw,dw) the
part of the wall corresponding to the proximal (distal) section of the fluid domain (see
Figure 2.1).

In this model, observe that the solute is regarded as a passive scalar ; that means
that it is simply convected by the blood in the lumen, neglecting any possible feedback
on the hemodynamics. In particular, viscosity and density of blood are assumed
independent of the solute concentration. This hypothesis is actually coherent with
the models for solute dynamics proposed in [2], [3].

Now, observe that (2.2)4 can be equivalently substituted by the equation

µf
∂Cf

∂nf
= −µw

∂Cw

∂nw
on Γ,

prescribing the continuity of the solute flux between the fluid and the wall domains.
However, we prefer the formulation (2.2), as it leads to a more efficient subdomain
iterative scheme.
Remark 2.1. For some gaseous solutes, the diffusivity coefficient µf depends on

the rate of deformation of blood (see [4]). This feature makes the mathematical analy-
sis of the coupled Navier–Stokes/solute dynamics problem more involved, as addressed
in [14]. However, it does not bring significant differences in the context of the present
work, which is mainly focused on the numerical approximation.

In order to carry out the mathematical analysis of the problem given by (2.1) and
(2.2), as well as its numerical discretization, we resort to their “weak” or variational
formulations. Concerning the Navier–Stokes equations, this can be done in a very
standard way and we refer to, e.g., [12], [17]. For the advection-diffusion problem
we introduce the following notation. For all ψf , φf ∈ H1

∂Ωf\Γ(Ωf ) and ψw, φw ∈
H1

∂Ωw\Γ(Ωw) set

af (ψf , φf ) = µf (∇ψf ,∇φf ) + ((u · ∇)ψf , φf ) ,(2.3)

aw (ψw, φw) = µw (∇ψw,∇φw) .(2.4)

Both af (·, ·) and aw (·, ·) are continuous and coercive bilinear forms; additionally,
aw (·, ·) is symmetric. Then, the weak formulation of problem (2.2) reads as follows.
Problem 2.1. Given the initial condition Cf (x, t = 0) = Cf,0,∈ H1

∂Ωf\Γ(Ωf )

and Cw(x, t = 0) = Cw,0 ∈ H1
∂Ωw\Γ(Ωw) find Cf ∈ L2(0, T ;H1

∂Ωf\Γ(Ωf )), Cw ∈
L2(0, T ;H1

∂Ωw\Γ(Ωw)) such that for all φf ∈ H1
∂Ωf\Γ (Ωf ) and φw ∈ H1

∂Ωw\Γ (Ωw)
(
∂Cf

∂t
, φf

)
+ af (Cf , φf ) + (Cf − Cw, φf )ζ = (sf , φf ) ,(

∂Cw

∂t
, φw

)
+ aw (Cw, φw) + (Cw − Cf , φw)ζ = (sw, φw) .

(2.5)

If the domain and the data are regular enough, Problem 2.1, coupled with the
(weak form of) Navier–Stokes one, is well posed. More precisely, the following propo-
sition can be shown (see [14]).
Proposition 2.1. If Ωf is a 2D domain smooth enough, then the coupled blood

solute dynamics problem admits a unique solution, depending continuously on the
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data. If Ωf is a 3D domain, the same conclusion holds true, provided the initial data
of the Navier–Stokes problem are sufficiently small.

Concerning the result of this proposition, we point out that the smallness of the
data for the Navier–Stokes problem is actually a standard and an unavoidable hy-
pothesis for ensuring the existence of a convective field in any problem involving an
incompressible fluid. Indeed, no unconditional well posedness result is so far available
for the Navier–Stokes equations (see [17], [12]). Moreover, observe that if the diffu-
sivity of the solute in the lumen is the function of the shear rate (see Remark 2.1) the
smallness of the initial data for the Navier–Stokes problem is necessary even for the
2D case.

We point out that in [14] only full Dirichlet boundary conditions for the blood
were considered, which yield a coercive bilinear form. However, in the current case, a
standard energy argument allows us to prove that the bilinear form is weakly coercive,
which is still sufficient to ensure the well posedness of the associated parabolic problem
(see [5], [6], [12]).

3. Discretization and Steklov–Poincaré operators.

3.1. The semidiscrete problem. We will suppose that the blood velocity and
pressure are available upon solving the weak counterpart of (2.1) and focus our atten-
tion on the computation of Problem 2.1. In view of the subsequent analysis, we first
introduce the semidiscrete model, namely the time-discrete counterpart of Problem
2.1. To this end, we subdivide the time interval [0, T ] in N time steps tn = n∆t,
with ∆t > 0 and n = 1, . . . , N . Setting χ = 1

∆t , we obtain the time-discrete problem
based on the backward Euler method.
Problem 3.1. Given C0

f and C0
w for every n = 0, 1, . . . , N − 1 find Cn+1

f ∈
H1

∂Ωf\Γ(Ωf ) and Cn+1
w ∈ H1

∂Ωf\Γ(Ωw) such that for all φf in H1
∂Ωf\Γ(Ωf ) and φw in

H1
∂Ωw\Γ(Ωw)


âf

(
Cn+1

f , φf

)
+
(
Cn+1

f , φf

)
ζ
− (Cn+1

w , φf

)
ζ
= χ

(
Cn

f , φf

)
+
(
sn+1
f , φf

)
,

âw
(
Cn+1

w , φw

)
+
(
Cn+1

w , φw

)
ζ
−
(
Cn+1

f , φw

)
ζ
= χ (Cn

w, φw) +
(
sn+1
w , φw

)
,

(3.1)

where sn+1
f = sf

(
tn+1

)
, sn+1

w = sw
(
tn+1

)
, C0

f and C0
w are the initial data, and

âf (ψf , φf ) = χ (ψf , φf ) + af (ψf , φf ) ∀φf , ψf ∈ H1
∂Ωf\Γ(Ωf ),(3.2)

âw (ψw, φw) = χ (ψw, φw) + aw (ψw, φw) ∀φw, ψw ∈ H1
∂Ωw\Γ(Ωw).(3.3)

Observe that these bilinear forms are continuous and coercive, and, in particular,
âw (·, ·) is symmetric.

3.2. The Steklov–Poincaré interface equation. We are going to provide a
different formulation of (3.1) which will be useful in view of the subsequent analysis.
In what follows, the specification of the time index n + 1 will be dropped whenever
clear from the context.

Let us start with the “wall-side” of the problem. Let Hw : Λ→ H1
∂Ωw\Γ(Ωw) be

defined such that, for a given function ρ ∈ Λ, uw = Hwρ solves
χuw − µw∆uw = 0 in Ωw,

uw = ρ on Γ, uw = 0 on ∂Ωw \ Γ.
(3.4)
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Moreover, let Gw : L2(Ωw) → H1
0 (Ωw) be the operator such that, for a given

function rw ∈ L2(Ωw), gw = Gwrw satisfies
χgw − µw∆gw = rw in Ωw,

gw = 0 on ∂Ωw.
(3.5)

Correspondingly, we introduce the following operator Hf : Λ → H1
∂Ωf\Γ(Ωf ) for the

“fluid-side” of the problem. Given ρ ∈ Λ, uf = Hfρ satisfies
χuf − µf∆uf + u · ∇uf = 0 in Ωf ,

uf = 0 on ∂Ωf \ Γ, µf
∂uf

∂nf
+ ζuf = ζρ on Γ.

(3.6)

Furthermore, Gf : L2(Ωf )→ H1
∂Ωf\Γ(Ωf ) is such that, given rf ∈ L2(Ωf ), gf = Gfrf

solves 
χgf − µf∆gf + u · ∇gf = rf in Ωf ,

gf = 0 on ∂Ωf \ Γ, µf
∂gf
∂nf

+ ζgf = 0 on Γ.
(3.7)

Finally, for a given function ρ ∈ Λ, we define

Sw : Λ→ Λ′ such that Swρ = µw
∂Hwρ

∂nw
+ ζρ,

Sf : Λ→ Λ′ such that Sfρ = −ζ(γfHfρ).

(3.8)

By extending a definition which is common in the framework of domain decomposi-
tion methods we call Sf and Sw the Steklov–Poincaré operators associated with the
heterogeneous problem at hand. A general discussion on the role and the properties
of Steklov–Poincaré (SP) operators in the framework of domain decomposition can
be found in [13]. On the basis of the previous definitions, the time-discrete formula-
tion of the problem can be reformulated in terms of an operatorial interface equation.
Indeed, if we set

S = Sf + Sw and η = −
(
µf

∂Gfrf
∂nf

+ µw
∂Gwrw
∂nw

)
,(3.9)

then, from (2.2)4, the following interface equation needs to be solved for the unknown
ρ at each time step:

Sρ = η .(3.10)

The SP operators can be reinterpreted in a weak from by considering (3.10) in a
distributional sense. Let us denote by 〈·, ·〉 the duality pairing of Λ with Λ′. By
Green formula, we obtain for all λ ∈ Λ

〈Swρ, λ〉 =
〈
µw

∂Hwρ

∂nw
, λ

〉
+ (ρ, λ)ζ = âw (uw,Lwλ) + (ρ, λ)ζ(3.11)
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with Lwλ ∈ H1
∂Ωw\Γ(Ωw) and

〈Sfρ, λ〉 = − (Hfρ, λ)ζ = − (uf , λ)ζ = − (ρ, λ)ζ + µf

〈
∂uf

∂nf
, λ

〉
= − (ρ, λ)ζ + âf (uf ,Lfλ)

(3.12)

with Lfλ ∈ H1
∂Ωf\Γ(Ωf ). In the latter equation, we have exploited the definition of

uf and, in particular, (3.6)2. Consequently,

〈Sρ, λ〉 = µw

〈
∂Hwρ

∂nw
, λ

〉
+ (ρ, λ)ζ − (Hfρ, λ)ζ = âw (uw,Lwλ) + âf (uf ,Lfλ)

(3.13)

for all λ ∈ Λ. By proceeding in a similar way for the right-hand side, the weak
formulation of the interface relation (3.10) finally reads as follows: find ρ ∈ Λ such
that

âw (Hwρ+ Gwrw,Lwλ) + âf (Hfρ+ Gfrf ,Lfλ) = (rf ,Lfλ) + (rw,Lwλ)(3.14)

for all λ ∈ Λ. Finally, we notice that, in the special case φf = Lfλ and φw = Lwλ,
and, provided that rf = χCn

f + sn+1
f , rw = χCn

w + sn+1
w , (3.14) is equivalent to (2.5).

3.3. The fully discrete problem. The space discretization of the problem is
carried out using the finite element method (FEM). To this end, let us introduce Thf
and Thw, two admissible triangulations (see, e.g., [12]) of Ωf and Ωw respectively. For
the sake of simplicity, we assume that Thf and Thw are conforming triangulations on
Γ. Consequently, Th = Thf ∪Thw is an admissible triangulation for Ωf ∪Ωw. Let h be
a characteristic length of the elements K ∈ Th and Vhf and Vhw be a couple of finite-
dimensional subspaces of H1

∂Ωf\Γ and H1
∂Ωw\Γ, respectively. Moreover, denote by

Vhw,0 a finite-dimensional subspace of H
1
0 (Ωw). Finally let Λh be a finite-dimensional

subspace of Λ such that the traces on Γ of functions in Vhf or Vhw belong to Λh. Denote
by Nf the dimension of Vhf , by Nw the dimension of Vhw, and by NΓ the dimension
of Λh. Let {φi,f} (i = 1, 2, . . . , Nf ) and similarly {φi,w} (i = 1, 2, . . . , Nw) be a basis
for Vhf and for Vhw, respectively; moreover, denote with {φi,Γ} (i = 1, 2, . . . , NΓ) a
basis for Λh. In what follows, the subscript h will identify the space discrete solution.

Based on these definitions, the space discretization of Problem 2.1 reads as follows.
Problem 3.2. Given the initial data C0

fh and C0
wh, for every n = 0, 1, . . . , N −1

(being N∆t = T the final time), find Cn+1
fh ∈ Vhf and Cn+1

wh ∈ Vhw such that for all
i = 1, . . . , Nf and j = 1, . . . , Nw


âf

(
Cn+1

fh , φi,f

)
+
(
Cn+1

fh , φi,f

)
ζ
− (Cn

wh, φi,f )ζ = χ
(
Cn

fh, φi,f

)
+
(
sn+1
f , φi,f

)
,

âw
(
Cn+1

wh , φj,w

)
+
(
Cn+1

wh , φj,w

)
ζ
−
(
Cn+1

fh , φj,w

)
ζ
= χ (Cn

wh, φj,w) +
(
sn+1
w , φj,w

)
.

(3.15)

Remark 3.1. Due to the convection dominated nature of the problem (see [15]),
the pure Galerkin discrete formulation (3.15) does not ensure stability to the numer-
ical solution unless the triangulation is fine enough to ensure that the local Péclet
number is less than one. It is therefore mandatory to adopt suitable stabilization tech-
niques. In particular, we will make use of a strongly consistent method like SUPG
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(streamline upwind Petrov Galerkin)—see, e.g., [12]. We address first the analysis
of the scheme to the Galerkin formulation (3.15) in order to point out the intrinsic
features of the method. Later on, we will address the modifications induced by the
presence of stabilizing terms (see section 4.1).

3.3.1. The discrete SP operators. Let us introduce the discrete counterpart
Ŝhw and Ŝhf of the SP operators. Following (3.11), we define

〈Ŝhwρ, λ〉 = âw (uw,Lwλ) + (ρ, λ)ζ ∀ρ, λ ∈ Λh,(3.16)

where

uw ∈ Vhw :

{
âw (uw, φw) = 0 ∀φw ∈ Vhw,0,
uw = ρ on Γ.

Similarly we define

〈Ŝhfρ, λ〉 = − (ρ, λ)ζ + âf (uf ,Lfλ) ,(3.17)

where

uf ∈ Vhf : âf (uf , φf ) + (uf , φf )ζ = (ρ, φf )ζ ∀φf ∈ Vhf .(3.18)

Finally, we set Ŝh = Ŝhw+Ŝhf . Then, the solution of Problem 3.2 can be reformulated
in terms of the interface equation

〈Ŝhρ, λ〉 = 〈η̂, λ〉 ∀λ ∈ Λ,(3.19)

where ρ stands for the trace of Cwh on Γ, i.e.,

ρ = Cwh |Γ
and

η̂ = −
(
µw

∂Gwrw
∂nw

+ µf
∂Gfrf
∂nf

)
,(3.20)

with

rf = rn+1
f = sn+1

f + χCn
fh, rw = rn+1

w = sn+1
w + χCn

wh,(3.21)

where, for the sake of clarity, the time index has been restored.
In what follows we will use several times the so called finite element uniform

extension theorem (FEUET), which states that ‖ρh‖Λ is uniformly equivalent (with
respect to h) to ‖uh,w‖H1(Ωw), where uh,w is the finite element approximation of
problem (3.4), where ρ is replaced by ρh; see [13, Theorem 4.1.3].

Proposition 3.1. The following properties hold for Ŝhw, Ŝhf , and Ŝh:
1. Ŝhw is continuous, symmetric, and coercive in Λh.
2. Ŝhf is continuous and negative; i.e., for any ρ ∈ Λh, 〈Ŝhfρ, ρ〉 < 0.

3. Ŝh is continuous and coercive in Λh.
Proof. Continuity and symmetry of Ŝhw can be proven from the continuity and

symmetry of âw (·, ·) and the definition (3.16), owing to the FEUET. Moreover, Ŝhw
is coercive thanks to the coercivity of âw (·, ·), the positivity of ζ, and the trace
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inequality (1.1). Observe in particular that the continuity and coercivity constants
do not depend on h.

Continuity of Ŝhf follows from the coercivity of the bilinear form on the right-
hand side of (3.18). Again, the continuity constant does not depend on h, depending
on the bilinear form properties. Moreover, from (3.17) and taking again φf = uf in
(3.18), we obtain

−〈Ŝhfρ, ρ〉 = (uf , ρ)ζ = âf (uf , uf ) + ‖uf‖2ζ > 0 ∀ρ ∈ Λh.(3.22)

Item 2 is thus proven. The continuity of Ŝh is now a consequence of the continuity of
Ŝhw and Ŝhf . In particular, we stress that the continuity constant is independent on
h.

Finally, we prove that Ŝh is coercive. Indeed, observe that by the definition of uf

and (3.22)

âf (uf ,Lfρ) = (ρ− γfuf , ρ)ζ = (ρ− γfuf , ρ− γfuf )ζ + âf (uf , uf ) .(3.23)

Consequently, we obtain

〈Ŝhρ, ρ〉 = âw (uw,Lwρ) + âf (uf ,Lfρ) ≥ âw (uw, uw) ≥ τ‖ρ‖2Λ.(3.24)

Finally, observe that the coercivity constant considered above is independent of h.
Indeed, the coercivity constant τ in (3.24) is independent of h. This is due to the
circumstance that uw is the extension of ρ so that we can advocate once again the
FEUET.

As a direct consequence of the previous properties, we obtain the following corol-
lary.
Corollary 3.1. The interface equation (3.19) admits a unique solution which

depends continuously on the data.
Proof. The functional F(λ) ≡ 〈η̂, λ〉 associated with the right-hand side of (3.19)

is continuous in Λh. Moreover, the bilinear form 〈Ŝh·, ·〉 is continuous and coercive
in Λh, as proved in Proposition 3.1. The result then follows from the Lax–Milgram
lemma.

4. The subdomain iterative method. In order to reduce the computational
cost required by the numerical solution of Problem 3.2, we suitably split the whole
problem into a sequence of subproblems to be solved in the two physical subdomains
(the lumen Ωf and the wall Ωw). In [14] we have introduced and analyzed an iterative
scheme based on the interface conditions (2.2)3 and (2.2)4. In the present work, we
consider a relaxed extension of the scheme in order to speed up the convergence. We
will extend the convergence results proven in [14] to the relaxed algorithm, taking
advantage of the reinterpretation of the scheme in terms of SP operators. (That was
not considered at all in [14].) In what follows, for notational convenience we will drop
the specification h, for the space discrete quantities, as well as the specification n+1 for
the time-discrete quantities (i.e., we will write [Cf,k, Cw,k] instead of [Cn+1

fh,k, C
n+1
wh,k]).

It is understood, however, that the iterative method is carried out on the fully discrete
problem.

The scheme which we adopt is the following. Given an initial guess ρ0 for Cw,0 on
the interface Γ, for k = 0, 1, . . . find the sequence of functions [Cf,k, Cw,k] ∈ Vhf×Vhw

by solving for all i = 1, . . . , Nf and j = 1, . . . , Nw

âf (Cf,k+1, φi,f ) + (Cf,k+1, φi,f )ζ = (rf , φi,f ) + (ρk, φi,f )ζ ,(4.1)
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âw (Cw,k+1, φj,w) + (Cw,k+1, φj,w)ζ = (rw, φj,w) + (Cf,k+1, φj,w)ζ ,(4.2)

ρk+1 = Cw,k+1|Γ,(4.3)

where rf and rw are defined in (3.21).
This is a Robin–Robin iterative scheme, as it is based on the conditions (2.2)3

and (2.2)4, which are Robin conditions for each subproblem involved.
In order to resort to an iterative scheme for the variable ρk+1 alone, let us elimi-

nate the unknowns Cf,k+1, Cw,k+1 from (4.1)–(4.3).
Let us take φf = Lfλ in (4.1), where λ is any function of Λh, and split Cf,k+1

as Cf,k+1 = uf,k+1 + gf , where uf,k+1 and gf solve, respectively, problems (3.6) and
(3.7) in a weak sense. Recalling (3.17), we have

(Cf,k+1, λ)ζ = (rf ,Lfλ) + (ρk, λ)ζ − âf (uf,k+1,Lfλ)− âf (gf ,Lfλ)

= −〈∇gf · nf , λ〉 − 〈Ŝhfρk, λ〉 ∀λ ∈ Λh.
(4.4)

Proceeding similarly on (4.2) and recalling that Cw,k+1 = uw,k+1 + gw, we obtain

〈ŜhwCw,k+1, λ〉 = âw (uw,k+1,Lwλ) + (Cw,k+1, λ)ζ ∀λ ∈ Λh

and

âw (gw,Lwλ) = (rw,Lwλ) + 〈∇gw · nw, λ〉 ∀λ ∈ Λh.

Consequently, taking φw = Lwλ in (4.2), by virtue of the latter two equations we have

〈ŜhwCw,k+1, λ〉+ 〈∇gw · nw, λ〉 = (Cf,k+1, λ)ζ ∀λ ∈ Λh.

Substituting (4.4) in the latter, we obtain

〈ŜhwCw,k+1, λ〉 = 〈Ŝhwρk+1, λ〉 = 〈η̂, λ〉 − 〈Ŝhfρk, λ〉 ∀λ ∈ Λh,(4.5)

where from (3.20)

η̂ = − (µf∇gf · nf + µw∇gw · nw).

If we consider a relaxation parameter θ, (4.3) becomes

ρk+1 = θCw,k+1|Γ + (1− θ)ρk.(4.6)

Hence for all λ ∈ Λh, by means of (4.5), we obtain

〈Ŝhw(ρk+1 − ρk), λ〉 = θ〈ŜhwCw,k+1, λ〉 − θ〈Ŝhwρk, λ〉 = θ〈η̂ − Ŝhρk, λ〉.(4.7)

Equation (4.7) actually sheds light on a useful reinterpretation of the Robin–Robin
method, which can be regarded as a preconditioned Richardson method for problem
(3.19), with Ŝhw playing the role of preconditioner for Ŝh. This observation allows for
a straightforward proof of convergence of the scheme. Indeed, we have the following
abstract result (for the proof, see, e.g., [13, Theorem 4.2.2 and Remark 4.2.4]).
Theorem 4.1. Let X be a real Hilbert space, X ′ its dual space, and 〈·, ·〉 the

duality paring between X ′ and X. Let Q : X → X ′ be a linear invertible continuous
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operator which can be split as Q = Q1 +Q2, where Qi (i = 1, 2) are linear operators.
Consider the problem

Qρ = η,(4.8)

where η ∈ X ′ is given and ρ ∈ X is to be determined. Suppose that Q2 is con-
tinuous, symmetric, and coercive and that Q is coercive. Then, there exists a real
value θmax, depending on the continuity and the coercivity constants, such that for
any θ ∈ (0, θmax), the sequence

ρk+1 = ρk + θQ−1
2 (η −Qρk)(4.9)

converges in X to the solution of (4.8) for any ρ0 ∈ X.
We point out that (4.9) is the generic iteration of a preconditioned Richardson

method to solve (4.8), with Q2 acting as preconditioner (see [16], [9]).

Now, if we set X = Λh, Q = Ŝh, Q1 = Ŝhf , Q2 = Ŝhw, we apply this result to
prove the convergence of the sequence {ρk} , k ≥ 0 to the solution of (3.19). Indeed,
all the hypotheses of the theorem are verified, as proven in the previous section.

Observe, moreover, that, in Theorem 4.1, the convergence rate as well as the
optimal value for θ are functions of the coercivity and continuity constants of Q2 and
of Q that in our case read Ŝhw and Ŝhw, respectively. In proving Proposition 3.1 we
pointed out that these constants are independent of the mesh size h in our problem.
This means that the rate of convergence of the proposed preconditioned iterations is
not affected by the mesh size, or, in other words, that the preconditioner is optimal.

Altogether, these observations can be collected in the following final result.
Proposition 4.1. The Robin–Robin iterative scheme (4.1), (4.2), and (4.6) is

convergent for any θ ∈ (0, θmax), and its rate of convergence is independent of the
spatial discretization. Precisely, there exists K < 1 such that for any θ ∈ (0, θmax),
there exists a constant Kθ ≤ K such that

‖ρ− ρk+1‖Λ ≤ Kθ‖ρ− ρk‖Λ, k ≥ 0.

In agreement with this conclusion, Table 4.1 shows that the convergence rate of
the relaxed Robin–Robin scheme is uniformly independent of the parameter h (which
in our computations with uniform grids is related to the number N of finite elements
nodes through the law N ≈ O(h−2)).
Remark 4.1. The convergence result of Theorem 4.1 refers to the preconditioned

Richardson iterative method. However, similar conclusions can be shown when more
efficient methods are applied to the same problem (see Table 4.1), such as the gen-
eralized minimal residual (GMRES) (see [16]), as proven in a very abstract form in
[13, sect. 4.2.1]. On the basis of this result, we will proceed with the GMRES methods
later on in section 4.3.

4.1. The iterative method in the convection dominated case. As previ-
ously pointed out, when advection dominated problems are considered, stabilization
techniques are required. This means that the bilinear form âf (·, ·) introduced in (3.2)
is substituted by

âf,stab (Cf , φf ) = âf (Cf , φf ) + af,h (Cf , φf ) ,(4.10)

where af,h (Cf , φf ) depends on the specific stabilization method. For instance (see,
e.g., [12]), if we set

LsC = −∇ · µf∇C, LssC =
1

2
∇ · uC +

1

2
u · ∇C (Lf = Ls + Lss),
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Table 4.1
Comparison of the number of iterations to reach convergence. In all these tests we have taken

Ωf = (0, 4)× (0, 1), Ωw = (0, 4)× (−1, 0), ux = 4u0(1− y)y, uy = 0. (A) µf = µw = 1.0 cm2s−1,
and ζ = 1.0 cm s−1. (Values ∗ refer to the pure Galerkin method, the other to the stabilized SUPG
method.) (B) µf = µw = 10−3cm2s−1 and ζ = 1.0 cm s−1. Finer grids are obtained by means of a
uniform refinement plus regularization; thus N = O(h−2). For large values of ζ the coupled problem
is severely ill-conditioned, yet the number of iterations is uniformly independent of h.

(A)
h N Unrelax. Rich. Relax. Rich. P-GMRES
0.1 4000 4∗ 4∗ 3∗
0.05 16000 4∗ 4∗ 3∗
0.025 60000 4∗ 4∗ 3∗
0.01875 106000 4∗ 4∗ 3∗
0.012 260000 4∗ 4∗ 3∗

(B)
h N Unrelax. Rich. Relax. Rich. P-GMRES
0.1 4000 8 7 5
0.05 16000 12 10 6
0.025 60000 20 15 7
0.01875 106000 23 17 7
0.012 260000 29-29∗ 20-20∗ 8-8∗

the symmetric and the skew-symmetric parts of the fluid differential operator Lf ,
respectively, then the most common strongly consistent stabilization methods resort
to set

af,h (Cf , φf ) =
∑

K∈Th

δ

(
LCf ,

hK

|u| (Lss + κLs)φf

)
K

,

where K is the generic element of the triangulation Th (supposed to be regular)
with diameter hK , (·, ·)K denotes the L2(K) scalar product, δ is a parameter to be
chosen, and κ identifies the different stabilization techniques. In particular, SUPG
corresponds to set κ = 0, while the Galerkin least squares (GaLS) method is given for
κ = 1. The Douglas–Wang (DW) method, on the other hand, corresponds to κ = −1.
For the SUPG method, we recall that if δ is suitably chosen, it is possible to prove
that the stabilized bilinear form âf,stab (·, ·) is coercive, the constant of coercivity being
independent of h (see [12, Proposition 8.4.1]). A similar result holds for the DW and
for the GaLS methods. In the latter case, the coercivity holds for any positive δ.

Starting form these results, we are able to prove that the convergence rate of the
iterative subdomains method proposed is independent of h even in the stabilized case.
First of all, the problem we consider in this case, in terms of SP operators can be
formulated in a way completely similar to the one proposed in the previous section,
provided that Ŝhf defined in (3.17) and (3.18) is substituted by

〈Ŝhf,stabρ, λ〉 = − (ρ, λ)ζ + âf,stab (uf ,Lfλ) ,(4.11)

with

uf ∈ Vhf : âf,stab (uf , φf ) + (uf , φf )ζ = (ρ, φf )ζ ∀φf ∈ Vhf .(4.12)

The crucial point is to prove that the stabilized SP operator Ŝhf,h is also continuous
with a continuity constant independent of h. Actually, observe that by definition

〈Ŝhf,stabρ, λ〉 = (uf , λ)ζ .
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From (4.12) for φf = uf , we deduce that

‖ γfuf ‖Λ≤ β ‖ ρ ‖Λ,
where β is a constant obtained as a function of the trace and coercivity constants and
therefore independent of h. The continuity constant of Ŝhf,stab is thus independent of
h. Consequently, the extension of Proposition 3.1 to the stabilized case is straightfor-
ward. We therefore conclude that Theorem 4.1 can be applied as well in the stabilized
case, again having independence of the convergence rate and the optimal value of θ
on h.

4.2. Algebraic reinterpretation of the iterative scheme. The coupled Prob-
lem 3.2 requires at each time step the solution of a system in the form

Ac = b.(4.13)

Denoted by NΓ the degrees of freedom associated with the interface Γ, the number
of degrees of freedom associated with the inner nodes in Ωw is given by Nw0 = Nw −
NΓ. Consequently, in (4.13), c = [cf , cw, cΓ]

T ∈ R
Nf+Nw is the vector of unknowns

specifying the discrete solution, with cf ∈ R
Nf , cw ∈ R

Nw0 , cΓ ∈ R
NΓ . b ∈

R
Nf+Nw is a function of the forcing terms, the boundary conditions, and the solution

computed at the previous steps and can be correspondingly split as b = [bf ,bw,bΓ]
T
,

bf ∈ R
Nf , bw ∈ R

Nw0 , bΓ ∈ R
NΓ . Finally, A ∈ R

(Nf+Nw)×(Nf+Nw) has the
following blockwise pattern:

A =


Aff 0 AfΓ

0 Aww AwΓ

AΓf AΓw AΓΓ

 ,(4.14)

where Aff is the Nf × Nf matrix associated with the discretization of the bilinear
form âf (ψf , φf ) + (ψf , φf )ζ for ψf , φf ∈ Vhf . Correspondingly, AfΓ arises from the

discretization of the term − (λ, φf )ζ (with λ ∈ Λh), while Aww is associated with

the discretization of âw (ψw0, φw0) for ψw0, φw0 ∈ Vhw,0 (functions with null trace on
Γ) and AwΓ refers to the discretization of âw (Lwλ, φw0) for λ ∈ Λh. AΓΓ is related
to the discretization of âw (Lwλ,Lwρ) + (λ, ρ)ζ for λ, ρ ∈ Λh. Finally, we note that

AΓf = AT
fΓ and AΓw = AT

wΓ and Aww and AΓΓ are symmetric.
The algebraic reinterpretation of the Robin–Robin iterative scheme readily fol-

lows. Our substructuring iterative method resorts to a preconditioned Richardson
scheme for (4.13),

Q (ck+1 − ck) = θ(b−Ack) = θrk, k ≥ 0,(4.15)

in which the matrix

Q =


Aff 0 0

0 Aww AwΓ

AΓf AΓw AΓΓ

(4.16)

is the preconditioner.
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If we formally eliminate cf and cw in (4.13), we obtain the reduced system

ΣcΓ = η(4.17)

with η = bΓ−AΓfA
−1
ff bf −AΓwA

−1
wwbw and Σ = AΓΓ−AΓwA

−1
wwAwΓ−AΓfA

−1
ff AfΓ.

Consequently, we obtain the splitting Σ = Σw+Σf , where Σw = AΓΓ−AΓwA
−1
wwAwΓ,

Σf = AΓfA
−1
ff AfΓ. Matrix Σ is the Schur complement of matrix A. Equation (4.17)

represents the finite-dimensional counterpart of (3.19), and Σ is the algebraic counter-

part of the SP operator Ŝh, while Σf and Σw play the role of Ŝhf and Ŝhw, respectively.
By means of the block LU factorization of A, we can explicitly compute the

iteration matrix associated with the following iterative scheme:

I − θQ−1A =


(1− θ)If 0 −θA−1

ff AfΓ

0 (1− θ)Iw −θA−1
wwAwΓΣ

−1
w AΓfA

−1
ff AfΓ

0 0 I − θΣ−1
w Σ

 .

In particular, on the third block the system (4.15) yields

Σw (cΓ,k+1 − cΓ,k) = θ (η − ΣcΓ,k) .(4.18)

The latter relation enlightens the role of the matrix Σw as a preconditioner for the
Schur complement in the interface problem (4.17). As the algebraic counterpart of

the operator Ŝhw, Σw is symmetric and positive definite.
From this perspective, we can reformulate Proposition 4.1 in the following manner.
Proposition 4.2. The preconditioned Richardson scheme (4.15) converges for

any θ belonging to a suitable interval (0, θmax). The preconditioner Q given in (4.16)
is optimal, making the rate of convergence independent of the space discretization.

4.3. Acceleration strategies. The reinterpretation of the Robin–Robin scheme
based on the Richardson framework has the advantage of highlighting that Σw is an
optimal preconditioner for Σ. (As well, Q is an optimal preconditioner for A.) On this
ground, we will take advantage of these preconditioners when more efficient iterative
procedures will be applied. We will start analyzing the effects of the static relax-
ation parameter in the Richardson framework, and then we will consider dynamical
strategies such as GMRES (see [16]).

Stationary Richardson methods. In order to compare the unrelaxed and the re-
laxed schemes, observe that the behavior of the iteration matrix I−θQ−1A is governed
by the third diagonal block I − θΣ−1

w Σ. In our case, Σw and Σ are positive definite,
but Σ is not symmetric since Aff is not symmetric (due to the convection term).
Therefore we cannot assert a priori that Σ−1

w Σ has real positive eigenvalues; thus, an
optimal static choice of θ is not straightforward (see, e.g., [9]). However, as a heuristic
choice, parameter θ is selected assuming that Σ is symmetric, setting

θ =
2

λmin + λmax
,

where σ = {λi} i = 1, . . . , NΓ is the spectrum of Σ−1
w Σ, for which a rough estimate

can be obtained as follows. We observe that since I−Σ−1
w Σ = −Σ−1

w Σf , the iteration
matrix associated with (4.18), in the unrelaxed case, and since τ = {µi} (for i =
1, . . . , NΓ) is its spectrum, the following inequalities hold:

λi = 1− µi and µi ≤ ‖−Σ−1
w Σf‖p ∀i = 1, . . . , NΓ ∀p > 0,(4.19)
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Mp :=
‖ ckΓ − ck−1

Γ ‖p
‖ ck−1

Γ − ck−2
Γ ‖p

≤ ‖−Σ−1
w Σf‖p.(4.20)

Consequently, making the approximation, Mp " ‖−Σ−1
w Σf‖p, and noticing that

λmin + λmax = 2− µmax − µmin we make the following choice: θ " 2
2−Mp

.

Table 4.1 resumes the comparison of these methods for a diffusion dominated case
(A) and an advection dominated one (B). From these results we see that, when the
global matrix A is ill-conditioned, the relaxation technique enhances the convergence
performances with respect to the unrelaxed case.

Dynamical choice of θ. In this approach the choice of θ is pursued automatically
by the chosen algorithm.

Recalling that the matrix A is positive definite but not symmetric, we consider, for
instance, the preconditioned generalized minimal residual (P-GMRES) method (see,
for example, [12], [16]), where Q is the preconditioner for the global system Ac = b.
As we have already pointed out in Remark 4.1, Q being the optimal preconditioner
derived from the previous analysis, the convergence rate of the P-GMRES algorithm is
independent of the number of degrees of freedom of the global system Ac = b. Table
4.1 shows that the P-GMRES method performs better than the stationary strategies
for both test cases.

Finally, we point out that for these tests the coefficients µf , µw, ζ have been
chosen with the purpose of making the matrix A very ill-conditioned; this explains
the different performance of the considered iterative methods. However, when µf ,
µw, ζ are chosen in the biological range for the specific application at hand, the
condition number of A is lower; thus the number of iterations necessary to reach
convergence is smaller for each one of the considered methods. On the other hand,
for the bioengineering applications, a very large number of unknowns is required;
consequently, most of the computational time is spent for solving the subsystems
Qz = r deriving from the preconditioning step. This explains why we have based
the choice of an efficient iterative method not only on the number of iterations but
also on the computational cost of each single iteration. In particular, a reduction of
the time necessary to pursue each iteration is, for example, obtained by resorting to
flexible preconditioned iterative solvers (see [16]). Among all the iterative methods
considered above, the only one that allows a flexible variant is the P-GMRES. Let us
briefly introduce it.

In the framework of descent methods, the computation of the descent direction
z is carried out by solving a system Qz = r (r being the residual) which in our case,
from definition (4.16), requires the solution of two subsystems:

Affzf = rf ,(4.21)  Aww AwΓ

AΓw AΓΓ


 zw

zΓ

 =

 rw

rΓ

−
 0

AΓfrf

 ,(4.22)

which can be carried out by means of iterative methods such as BiCGStab or GMRES.
The end of this flexible strategy is to compute the global solution Ac = b by solving
(4.21) and (4.22) with a large tolerance, reducing henceforth the computational cost
of the solution process. This can be done through the algorithm described below.
Let us define with Q̂−1

j j = 1, 2, 3, . . . an approximation of Q−1 (obtained in our case
by a low cost solution of (4.21), (4.22)) then the flexible P-GMRES (F-P-GMRES)
algorithm reads (see [16]) as follows.
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Table 4.2
Quantitative comparison between P-GMRES and F-P-GMRES for different test cases. This

example shows that the F-P-GMRES method and the proposed choice of q work well for different
geometries, discretized with different triangulations sharing, however, a comparable number of nodes.
Note that the tolerance of the outer iterative procedure is always the same (equal to 10−10).

P-GMRES F-P-GMRES
(p = 10) (p = 10, q = 5)

Rectangular domains (h = 0.012)
Iterations 2 2

Time/iteration (s) (aver.) 239.18 115.51
Carotid bifurcation

Iterations 3 3
Time/iteration (s) (aver.) 35.93 15.96

Stenosed artery
Iterations 3 3

Time/iteration (s) (aver.) 92.43 40.04

Algorithm 4.1. F-P-GMRES.
Compute z0 = Q̂−1

0 (b−Ax0), β = ‖z0‖2, v1 = r0/β.
For j = 1, . . . ,m Do:

compute w = Avj,

compute zj = Q̂−1
j w.

For i = 1, . . . , j Do:
hi,j = (w,vi),
w = w − hi,jvi,

End Do.
Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j.
Define Zm = [z1, . . . , zm], Hm = {hi,j}1≤i≤j+1;1≤j≤m.

End Do.
Compute ym = argminy‖βe1 −Hmy‖2, and xm = x0 + Zmym.

If ‖Q̂−1
m (b−Axm)‖2 < tol = 10−p p ∈ N then end, else x0 ← xm.

A possible strategy to choose Q̂−1
j at each iteration is as follows. Should 10−p be

the tolerance fixed in Algorithm 4.1, the tolerance of the iterative method applied to
solve systems (4.21), (4.22) is set to 10−q, with q = [p/2].

For the application at hand, by adopting this strategy one obtains that F-P-
GMRES requires less CPU time to converge than P-GMRES (see Table 4.2).

As shown in Table 4.2, the application of the F-P-GMRES method (always based

on the preconditioner provided by Ŝhw) is very efficient. Comparing it with GMRES
we see in fact that, although we have reduced the tolerance of the preconditioning
step, consequently reducing the efficiency of the preconditioner, the number of global
iterations does not increase. Thus the reduction in the computational cost at each
iteration directly provides a reduction in the time needed to solve Ac = b. Moreover,
Table 4.2 shows that the considered algorithms behave well in the case of different
geometries. In particular, we have considered test cases that are relevant for hemo-
dynamics, the stenosed artery, and the carotid bifurcation.

5. Numerical results in case of physiological interest. In the present sec-
tion we show some numerical results about blood and oxygen dynamics in the carotid
bifurcation, a site of relevant interest in biomedical applications. We point out that
our main concern is to test the efficiency of the proposed iterative method and not to
give significant results from a quantitative point of view. For this reason, the model
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Fig. 5.1. A 2D model for the lumen (right) and the wall (left) of a carotid bifurcation. The
dashed line represents the fluid-wall interface, the thick solid line represents the inflow of the lumen,
while the thin solid line represents the outflow of the lumen or the outer surface of the arterial wall.

and the geometry are simplified (and in particular we deal with a 2D geometry ob-
tained from data proposed in [7]), even if we include realistic numerical values for
the physical constants at hand. In a forthcoming paper, on the basis of the good re-
sults illustrated in what follows, we plan to extend the methodology to more complex
models and 3D geometries.

In the present section, as a realistic example, we apply our iterative substructuring
method to the case of a carotid bifurcation, which is a preferential site of atheroscle-
rosis, specifically in the external side of the carotid sinus. A current hypothesis about
the possible reasons of this prominence to disease development is related to a reduc-
tion in the oxygen absorption by the sinus arterial wall, induced by the local flow
patterns (see, e.g., [15]).

For the carotid test case we have considered stationary and pulsatile flow con-
ditions. The selection of the boundary data is based on those proposed in [7]. In
the stationary case, a parabolic profile is imposed on the upstream section, ux =
kumax(R

2 − y2), uy = 0 where k = 10.4, umax = 10 cm s−1, R = 0.31 cm, while null
velocity, u = 0, is prescribed on the wall boundary and zero traction force is pre-
scribed on the outflow section, (ρν∇u−PI) ·n = 0 (see Figure 5.1 for a description of
the boundaries ∂Ωf and ∂Ωw). The pulsatile case differs from the stationary one for
the inflow conditions, ux = kg(t)(R2 − y2), uy = 0, where g(t), represented in Figure
5.2, describes the blood flow at the entrance of the carotid during a heartbeat. In
both cases, a constant blood kinematic viscosity ν = 0.033 cm2 s−1 has been chosen.

With regard to the concentration in the lumen, a reference concentration of oxy-
gen, C0 = 0.04 g cm−3, has been prescribed on the inflow, condition (2.23) has been
prescribed on the wall boundary, and ∇C · n = 0 has been prescribed on the outflow
boundary. This condition is also prescribed on the outer wall in Ωw. The oxygen
dynamics have been simulated choosing the diffusivity µf = µw = 10−5cm2 s−1, and
ζ = 10−4(1+ |σ|) cm s−1, where σ is the shear stress exerted by the blood on the wall.
From the numerical viewpoint, we consider Ωf discretized with 20494 nodes and Ωw

discretized with 15030 nodes (see Figure 5.3). With regard to boundary conditions,
Dirichlet ones are imposed in an essential way, while Neumann and Robin conditions
are imposed in a natural way, as is customary in the framework of Galerkin discretiza-
tion and, in particular, in the framework of the FEM; see [12]. Finally, the numerical
method adopted ensures a first order accuracy in time, being based on an implicit
Euler scheme. The finite elements adopted are piecewise linear. The Navier–Stokes
solver is based on the so-called Yosida method (see [10]) on P

1isoP2 elements.
Concerning the numerical results, the velocity field in the bifurcation shows a

recirculation zone (see Figures 5.3 and 5.4) both in the steady and pulsatile cases.
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Fig. 5.2. Maximum inflow velocity (cm/s) during a heartbeat (left) and computational grid for
the 2D carotid simulation (right).
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Fig. 5.3. Velocity field (top-left), pressure field (P−Pext) (top-right), and oxygen concentration
(bottom) in the carotid bifurcation in the steady case.
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Fig. 5.4. Blood velocity and oxygen concentration in the carotid bifurcation in the pulsatile
case at 1/5, 2/5, 3/5 of a heartbeat. In this case only the concentration in Ωf is visualized. The
recirculation zone which possibly inhibits the oxygen absorption is evident in the different instants
of the heartbeat.

The presence of recirculations induces in the steady case a sensibly lower oxygen
concentration in proximity of the sinus wall and, consequently, the reduction of the
oxygen absorption by the wall, which could be related to the disease development.
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In the pulsatile case the flow pattern is more complex: a recirculation zone, moving
upstream and downstream (yielding a lack of oxygen), is still present next to the
external side of the (inner) carotid sinus. In this case, the oxygen absorption is further
reduced by the low permeability induced by the small values of |σ|. Indeed, the flow
dynamics in the carotid sinus induce small and oscillating shear stresses which actually
determine a permeability reduction according to the law ζ = 10−4(1 + |σ|) cm s−1

(see also [18]).

6. Conclusions. In this paper we analyzed from the numerical viewpoint the
solution of problem (2.2). The multidomain and the heterogeneous nature of this
problem induced us to rely on iterative methods to compute the global solution. Con-
sequently, in the framework of iterative substructuring methods, we introduced special
SP operators in order to take into account conditions (2.23, 2.24). The analysis of
the properties of these operators allowed us to apply domain decomposition theory
in order to prove the convergence of the iterative methods adopted to solve problem
(2.2). Additionally, we proved that the mesh size does not affect the rate of conver-
gence of the methods. Finally the problem of reducing the computational time was
taken into account. To this end, we considered a variant of the GMRES algorithm,
the so called F-P-GMRES, and we verified, with numerical tests, that this method is
particularly efficient in solving the problems arising from the blood solute dynamics.
The simplified test case considered, namely the carotid bifurcation, has been discussed
from both the numerical and the physiological point of view.
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