
Honesty by Typing
Technical Report

Massimo Bartoletti1, Alceste Scalas1, Emilio Tuosto2, and Roberto Zunino3

1Università degli Studi di Cagliari, Italy — {bart , alceste.scalas}@unica.it
2University of Leicester, UK — emilio@mcs.le.ac.uk

3Università degli Studi di Trento and COSBI, Italy — roberto.zunino@unitn.it

2013

Abstract

We propose a type system for a calculus of contracting processes. Processes may stipulate contracts, and then
either behave honestly, by keeping the promises made, or not. Type safety guarantees that a typeable process is honest
— that is, the process abides by the contract it has stipulated in all possible contexts, even those containing dishonest
adversaries.

1 Introduction

1.1 The problem

It is commonplace that distributed applications are not easy to design. Besides the intrinsic issues due e.g. to physical or
logical distribution, and to the fragility of communication networks and their low-level protocols, distributed applications
have to be engineered within an apparent dichotomy. On the one hand, distributed components have to cooperate in
order to achieve their goals and, on the other hand, they may have to compete, e.g. to acquire shared resources. This
dichotomy is well represented by the service-oriented paradigm, which fosters the shift from “stand-alone” applications
to dynamically composed ones.

Cooperation and competition hardly coexist harmoniously. Most approaches to the formal specification of concurrent
systems typically assume that components behave honestly, in that they always adhere to some agreed specification.
For instance, this could be some behavioural type inferred from the component, and the assumption is that the static
behaviour safely over-approximates the dynamic one. We argue that this assumption is unrealistic in scenarios where
competition prevails against cooperation. Indeed, in a competitive scenario components may act selfishly, and diverge
from the agreed specification.

We envision a contract-oriented computing paradigm [2], for the design of distributed components which use
contracts to discipline their interaction. CO2 [2] is a core calculus for contract-oriented computing. A CO2 process
may advertise contracts to some contract broker; once the broker has found a set of compliant contracts, a session is
established among the processes which advertised them. Processes may then use this session to perform the actions
needed to realise their contracts, similarly to other session-centric calculi.

A distinguished feature of CO2 is that processes are not supposed to respect their contracts, nor are they bound to
them by an enforcing mechanism. More realistically, dishonest processes may avoid to perform some actions they have
promised in their contracts. This may happen either intentionally, e.g. a malicious process which tries to swindle the
system, or unintentionally, e.g. because of some implementation bug (possibly exploited by some adversary). In both
cases, the infrastructure can determine which process has caused the violation, and adequately punish it.

A crucial problem is then how to guarantee that a process will behave honestly, in all possible contexts where it
may be run. If such guarantee can be given, then the process is protected both against unintentional bugs, and against
(apparently honest) adversaries which try to make it sanctioned.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Cagliari

https://core.ac.uk/display/54606096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 1 INTRODUCTION

A negative result in [3] is that the problem of determining if a process is honest is undecidable for a relevant class of
contracts. These are the contracts introduced in [9], and then refined in [10], for modelling WSDL and WSCL contracts.
The problem is then how to find a computable approximation of honesty, which implies the dynamic one.

1.2 Example
Let us consider an on-line food store (participant A), which sells apples (a) and bottles of an expensive italian Brunello
wine (b). Selling apples is quite easy: once a customer places an order, it is accepted (with the feedback ok) and the
store waits for payment (pay) before shipping the goods (ship-a). However, if the customer requests an expensive bottle
of Brunello, the store reserves itself the right to choose whether to accept the order (and then wait for payment and ship
the item, as above), or to decline it, by answering no to the customer. These intentions are modeled by the following
store contract:

c = a.ok.pay.ship-a + b.
�
no ⊕ ok.pay.ship-b

�

This contract features two kinds of branching operators: external choice +, and internal choice ⊕. External choice
requires the other party (in this case, the customer) to choose which prefix will drive the contract evolution. The choice
is between apples a and bottles b. Internal choice, instead, allows the advertising party (the store) to choose a branch,
by selecting either ok or no.

In order to sell its goods, the store needs to find an agreement with a participant advertising a compliant contract.
Intuitively, contract compliance is based on the duality of actions and internal/external choices. For instance, the store
contract c is compliant with the following customer contract:

d = b . (ok.pay.ship-b + no)

A customer B who advertises such contract wants to buy Brunello wine: she promises to select b (dual of b in the store
contract), and then presents an external choice that lets the store choose between ok or no feedbacks; in the first case,
she promises to pay and wait for shipment.

CO2 allows for describing the behaviour of each participant as a process, with the ability to advertise contracts and
execute the actions required to honour them. For instance, the store A can advertise its contract c by firing the prefix
tellK ↓x c, where the index K is the name of an external broker, whom the contract is being advertised to. We shall not
specify the behaviour of K, and just assume that it establishes sessions when compliant contracts are found. The index x
in ↓xc is the name of a channel of A. When a session is established between A and (say) B, a fresh session name s is
shared between A and B. Technically, x is replaced with s. Participants A and B will then use such session to perform
the actions required by their contracts.

A possible specification of A is e.g.:

PM = (x)(tellK↓x c . (dox a .XM(x) + dox b .XM(x)))

XM(x) def
= dox ok .dox pay .askx ship-a? .dox ship-a

Here, the store creates a private channel x, and advertises the contract c. Once a session is established, the process can
proceed, and accept an order for a or b on x. This is modelled by the choice operator +, which is the usual one of
CCS (not to be confused with + of contracts), with guards dox a and dox b. In both cases, the process XM(x) is invoked.
There, the store accepts the transaction with an ok action, and waits for payment. Then it checks whether the contract
requires the store to ship apples: if the query askx ship-a? passes, the goods are shipped. Otherwise, when the customer
has selected Brunello, the store maliciously gets stuck, and so the customer has paid for nothing. This store is dishonest,
because it does not respect its own contract c.

Consider now a non-malicious implementation of the food store. Before accepting orders, the store requires an
insurance to cover shipment damages — which may be particularly useful for the expensive (and fragile) Brunello
bottles. Thus, now A advertises a contract cp to an insurance company C with an offer to pay (payP), followed by the
possibility to choose between getting a full coverage on the value of the goods, or cancelling the request:

cp = payP .
�
cover⊕ cancel

�

The behaviour of the store is now modelled by the process:

PN = (x,y)
�
tellC ↓y cp .doy payP . tellA ↓x c .

�
dox a .dox ok .XN(x)+dox b .YN(x,y)

��

XN(x)
def
= dox pay .

�
askx ship-a? .dox ship-a+askx ship-b? .dox ship-b

�

YN(x,y)
def
= doy cover .

�
dox ok .XN(x) + τ .dox no

�

1.3 Contributions 3

Here, the store first requests an insurance policy, by advertising the contract cp; once the insurance company C agrees,
the store pays the premium (on channel y). Then, just like the previous case, the store advertises c, and once an
agreement with a customer is reached, it waits for a or b orders. If apples are requested, the process acknowledges
(ok) and invokes XN(x); there, the store waits for payment, checks which good is expected to be shipped according to
the contract, and actually ships it. Otherwise, if Brunello is requested, YN(x,y) is invoked: there, the store requests the
insurance coverage that was paid in advance; then, either the order is accepted and XN(x) is invoked for payment and
shipment (as above), or the transaction is declined after an internal action τ (e.g. wake a up after a timeout).

This implementation is not as malicious as the first attempt, because at least it actually ships the goods upon payment
— but it is not honest either. The problem lies in the interaction between the store and the other parties. If C does not
deliver the promised cover, the store keeps waiting on doy cover (which is a blocking operation), unable to honour c by
providing the expected ok/no. Furthermore, A is dishonest w.r.t. cp: the insurance fee is paid in advance, but A might
never perform doy cover nor doy cancel — e.g. if no agreement on c is found, or if the customer B remains stuck, or if B
simply chooses to buy apples. Thus, due to implementation naı̈veties, A may be blamed because of the unexpected (or
malicious) behaviour of other participants.

An actually honest food store requires a slightly more complex implementation:

PH = (x)(tellA ↓x c . (dox a .XH(x) + dox b .YH(x)))

XH(x)
def
= dox ok .dox pay .

�
askx ship-a? .dox ship-a .dox pay.+askx ship-b? .dox ship-b

�

YH(x)
def
= (y)

�
tellC ↓y cp .doy payP |

�
doy cover .XH(x)+ τ .

�
dox no | doy cancel

���

This time, A advertises c and waits for a or b orders. If apples are requested, the store invokes XH(x), which
acknowledges ok and, just like XN(x) above, waits for payment and ships the good expected by the contract. If Brunello
is requested, then YH(x) is invoked instead. There, a new private channel y is created, the store advertises cp and tries
to pay the insurance fee on y; in parallel, the store either requests the coverage and invokes XH(x) (as above), or it
performs an internal action τ (e.g. wake up after a timeout). In the latter case, the order is declined and (in parallel) the
insurance request is cancelled. As a result, even if either B or C remains stuck and culpable, A is always able to honour
the contract stipulated with the other party.

1.3 Contributions
The main contribution of this paper is a type discipline for statically ensuring when a CO2 process is honest. The need
for a static approximation is motivated by the fact that honesty is an undecidable property, as shown in [3]. Our type
system associates behavioural types to each channel of a process. Checking honesty on these abstractions is decidable
(Theorem 27). We establish subject reduction (Theorem 49) and progress (Theorem 51), which are then used to prove
type safety: typeable processes are honest (Theorem 52).

2 A Theory of Contracts
Contracts are modelled in a variant of CCS, inspired by [10] and refined in [3]. Here we provide a brief summary, and
refer to [3] for the full technical details.

We assume a set of participants, ranged over A,B, . . ., and a set of atoms a,b, . . ., that represent the actions performed
by participants. We use an involution ā, as in CCS. We assume a distinguished atom e (for “end”) such that e = ē,
which models a successfully terminated participant, similarly to [10].

We distinguish between (unilateral) contracts c, which model the promised behaviour of a single participant, and
bilateral contracts γ, which combine the contracts of two participants.

An internal sum
�

i∈I ai ; ci requires a participant A to choose and perform one of the actions ai, and then to behave
according to its continuation ci. Dually, an external sum ∑i∈I ai .ci requires A to offer B a choice among all the branches.
If B chooses ai, then A must continue according to ci.

The behaviour of bilateral contracts is given in terms of a labelled transition relation. Here we just comment on the
main rules. Rule [INTEXT] regulates the interaction between a participant A making an internal choice, and B offering an
external choice:

A says (ā ; c⊕ c�) | B says (a .d +d�)
A says a−−−−→→ A says c | B says ready a.d

4 3 A CALCULUS OF CONTRACTING PROCESSES

If A chooses the branch a in her internal sum, then B is committed to the corresponding branch ā in his external sum.
This is modelled by marking the selected branch with ready ā, and by discarding the other branches. Rule [RDY] allows
B to perform the marked branch:

A says c | B says ready ā. d
B says ā−−−−→→ A says c | B says d

The previous rules do not define the behaviour of a bilateral contract in case an internal choice is not matched by
any action in the external choice of the partner. To guarantee that a bilateral contract can keep evolving (until one of the
participants wants to exit), we introduce the notion of compliance, by adapting that in [10]. This relies on the notion of
ready sets.

Definition 1 (Ready sets, [3]). The ready sets of a contract c (denoted by RS(c)) are defined as:

{{ready a}}, if c = ready a.c� RS(c�), if c = rec X . c�

{{ai} | i ∈ I}, if c =
�

i∈I ai ; ci and I �= /0 {{ai | i ∈ I}}, if c = ∑i∈I ai .ci

Notice that, RS(c) �= /0 for all contracts c.

We also assume the existence of a compliance relation between contracts. Intuitively, we write c �� d when there is
a correspondence between the ready sets of c and d, and such relation is maintained when the contracts evolve (i.e.,
A says c | B says d

µ−→→ A says c� | B says d� =⇒ c� �� d�). The full details are are available in [3].

3 A Calculus of Contracting Processes
The contracts of Sect. 2 are embedded in the process calculus CO2 [3]. We report in this section the main concepts and
definitions. Let V and N be disjoint sets of, respectively, session variables (ranged over by x,y, . . .) and session names
(ranged over by s, t, . . .). Let u,v, . . . range over V ∪N .

Definition 2 (CO2 syntax). The syntax of CO2 is given by:

P ::= ∑i πi.Pi
�� P | P

�� (�u)P
�� X(�u) π ::= τ

�� tellA ↓u c
�� fuse

�� dou a
�� asku φ

K ::= ↓u A says c
�� K | K S ::= 0

�� A[P]
�� A[K]

�� s[γ]
�� S | S

�� (�u)S

where S are systems, K are latent contracts, P are processes, and π are prefixes.

Processes specify the behaviour of participants. A process can be a prefix-guarded finite sum ∑i πi.Pi, a parallel
composition P | Q, a delimited process (�u)P, or a constant X(�u). We write 0 for ∑ /0 P and π1.Q1 +P for ∑i∈I∪{1} πi.Qi
provided that P = ∑i∈I πi.Qi and 1 �∈ I. We omit trailing occurrences of 0. We stipulate that each X has a unique
defining equation X(u1, . . . ,u j)

def
= P such that fv(P)⊆ {u1, . . . ,u j}⊆ V , and each occurrence of process identifiers in

P is prefix-guarded.
Prefixes include the silent action τ, contract advertisement tellA ↓u c, contract stipulation fuse, action execution dou a,

and contract query asku φ. In each prefix π �= τ, the identifier u refers to the target session involved in the execution of π.
As in [3], we leave the syntax of φ unspecified.

A latent contract ↓x A says c represents a contract c advertised by A but not stipulated yet. The variable x will be
instantiated to a fresh session name upon stipulation. K simply stands for the parallel composition of latent contracts.

A system is composed of participants A[P], sessions s[γ], sets of latent contracts advertised to A, denoted by A[K],
and delimited systems (�u)S. Delimitation (�u) binds session variables and names, both in processes and systems. Free
variables and names are defined as usual, and they are denoted by fv() and fn(). A system/process is closed when it
has no free variables. Each participant may have at most one process in a system, i.e. we forbid systems of the form
A[P] | A[Q]. We say that a system is A-free when it does not contain the participant A[P], nor latent contracts of A, nor
contracts of A stipulated in a session. Note that sessions cannot contain latent contracts.

The semantics of CO2 is formalised by a reduction relation on systems (Def. 3). This relies on a standard structural
congruence, which is the smallest relation satisfying the laws in fig. 3.1 on the facing page. In particular, (�u)A[(�v)P]≡
(�u,�v)A[P] allows to move delimitations between CO2 systems and processes, while A[K] | A[K�]≡ A[K | K�] allows to
freely select a compliant subset from a group of latent contracts, e.g. before trying to fire rule [FUSE].

In order to define honesty in Sect. 4, here we decorate transitions with labels, by writing
A : π,σ−−−→ for a reduction

where participant A fires prefix π. Also, σ is a substitution which accounts for the instantiation of session variables
upon a fuse.

5

(�u)A[(�v)P]≡ (�u,�v)A[P] A[K] | A[K�]≡ A[K | K�]

Z | 0 ≡ Z Z | Z� ≡ Z� | Z (Z | Z�) | Z�� ≡ Z | (Z� | Z��)

Z | (u)Z� ≡ (u)(Z | Z�) if u �∈ fv(Z)∪ fn(Z)

(u)(v)Z ≡ (v)(u)Z (u)Z ≡ Z if u �∈ fv(Z)∪ fn(Z)

Figure 3.1: Structural congruence for CO2 (Z,Z�,Z�� range over processes, systems, or latent contracts)

A[τ.P+P� | Q]
A : τ, /0−−−−→ A[P | Q] [TAU]

S
A : π,σ−−−−→ S� ranσ∩ fn(S��) = /0

S | S��
A : π,σ−−−−→ S� | S��σ

[PAR]

A[tellB ↓u c.P+P� | Q]
A : tellB ↓uc, /0−−−−−−−−→ A[P | Q] | B[↓u A says c] [TELL]

K �σ γ ranσ = {s} s fresh

A[fuse.P+P� | Q] | A[K]
A : fuse,σ−−−−−→ A[P | Q]σ | s[γ]

[FUSE]

γ A says a−−−−−→→ γ�

A[dos a.P+P� | Q] | s[γ] A : dos a, /0−−−−−−→ A[P | Q] | s[γ�]
[DO]

γ � φ

A[asks φ.P+P� | Q] | s[γ]
A : asks φ, /0−−−−−−→ A[P | Q] | s[γ]

[ASK]

S
A : π,{s/x}−−−−−−→ S�

(x)S
A : π, /0−−−−→ (s)S�

[DEL1]
S

A : π,σ−−−−→ S� u �∈ ranσ σ�=u �= /0

(u)S
A : π,σ�=u−−−−−→ (u)S�

[DEL2]

X(�u) def
= P A[P{�v/�u} | Q] | S

A : π,σ−−−−→ S�

A[X(�v) | Q] | S
A : π,σ−−−−→ S�

[DEF]

Figure 3.2: Reduction semantics of CO2

Definition 3 (CO2 semantics). The relation
A : π,σ−−−→ between systems (considered up-to structural congruence ≡) is the

smallest relation closed under the rules of Fig. 3.2. The relation K �σ γ holds iff (i) K has the form ↓x A says c | ↓y
B says d, (ii) c �� d, (iii) γ = A says c | B says d, and (iv) σ = {s/x,y} maps x,y ∈ V to s ∈ N . The substitution σ �=u in
rule [DEL2] is defined as σ(v) for all v �= u, and it is undefined on u.

The rules in Fig. 3.2 are a minor variation of those presented in [3]. Their intuitive meaning is sketched in the
introductory example (Sec. 1): [TELL] advertises a contract c, [FUSE] creates a new session s upon contractual compliance,
[DO] performs a contractual action, [ASK] blocks until a session satisfies an observable φ. The other rules are standard.

Example 4. Consider the following system:

S = A[(x)X(x)] | B[(y)Y (y)] | K[fuse]

X(x) def
= tellK ↓x (a ; E) .dox a Y (y) def

= tellK ↓y (a .E) .doy ā

A possible execution of S is the following:

S
B : tellC ↓yā, /0−−−−−−−→ A[(x)X(x)] | C[fuse] | (y)(B[doy ā] | C[↓y B says ā .E]) (1)
A : tellC ↓xa, /0−−−−−−−→ (x)(A[dox a] | (y)(B[doy ā] | C[fuse] | C[↓x A says a ; E | ↓y B says ā .E])) (2)
K : fuse, /0−−−−−→ (s)(A[dos a] | (y)(B[dos ā] | C[0] | s[A says a ; E | B says ā .E])) (3)

≡ (s)
�
A[dos a] | B[dos ā] | s[A says a ; E | B says ā .E]

�

A : dos a, /0−−−−−→ (s)(A[0] | B[dos ā] | s[A says E | B says ready ā .E]) (4)

6 4 ON HONESTY

Transitions (1) and (2) above are obtained by applying rules [TELL], [PAR], and [DEF]. The derivation of transition (3) is
obtained as follows. First, by rule [FUSE] we have:

C[fuse] | C[↓x A says a ; E |↓y B says ā .E]
K : fuse,{s/x,y}−−−−−−−−→ C[0] | s[A says a ; E | B says ā .E]

Hence, by rules [PAR] and [DEL2], we have:

(y)(B[doy ā] | C[fuse] | C[↓x A says a ; E |↓y B says ā .E])
K : fuse,{s/x}−−−−−−−→ (y)(B[dos ā] | C[0] | s[A says a ; E | B says ā .E])

By applying rules [PAR] and [DEL1] to the above, we obtain (3). Finally, transition (4) is obtained by rule [DO], since

γ A says a−−−−→→ γ�.

4 On Honesty
We now define when a participant is honest. Intuitively, honest participants always respect the contracts they advertise.
As remarked in Sect. 1, this notion is crucial in contract-oriented systems, since honest participants will never be liable
in case of misbehaviours.

More precisely, a participant A is honest when she realizes every contract she advertises, in every session she may
be engaged in. Thus, if a system S contains a session s with a contract c advertised by A, such as:

A[P] | s[A says c | · · ·] | · · ·

then A must realize c, even in a system populated by adversaries who play to cheat her. To realize c, A must be “ready”
to behave according to c.

Example 5. If A[P] has advertised a contract c with an internal choice ci = a⊕b, then P must be ready to do at least
one of the actions a,b. Instead, if c is an external choice ce = a+b, then P must be ready to do both the actions a and b.

Realizability requires the above readiness property to be preserved by arbitrary transitions taken by S. This amounts
to say that, in any reduct of S containing a reduct P� of P and a reduct c� of c, the process P� must still be ready for c�.

To formalise the notion of “P is ready for c”, we need to inspect P and c. At the contract level, the ready sets in
RS(c) (Def. 1) reveal whether c is exposing an internal or an external choice. At the process level, we consider the
reachable actions in P.

Example 6 (Processes and readiness). Consider the following processes:

P0 = dos a P1 = dos a+dos b+dos z

P2 = τ.dos a+ τ.dos b P3 = dot w.dos a+dot z.dos b

We now study whether P0, . . . ,P3 are ready for contracts ci and ce (introduced in Ex. 5) in session s. According to Def. 1,
the ready sets of ci are {a} and {b}, while ce has only the ready set {a,b}. We have that:

• P0 is ready for ci, because there exists a ready set ({a}) in RS(ci) such that dos a is enabled in P0. Instead, P0 is
not ready for ce, because the ready set {a,b} of ce also contains b, which is not enabled in P0.

• P1 is ready for both ci and ce. This is because P1 enables two actions, dos a and dos b, which cover all the ready
sets of ci and ce. Notice that the branch dos z is immaterial, because rule [DO] blocks any action not expected by
the contract.

• P2 is ready for ci, because whatever branch is taken by P2, it leads to an unguarded action which covers one of
the ready sets in ci. Instead, P2 is not ready for ce, because after one of the two branches is chosen, one of the
two actions expected by ce is no longer available.

• The case of P3 is a bit more complex than the above ones. Readiness w.r.t. ci depends on the context. If the
context eventually enables one of the dot , then either dos a or dos b will be enabled, hence P3 is ready for ci.
Otherwise, P3 is stuck, hence it is not ready for ci. Notice that P3 is not ready for ce, regardless of the context.

To formalise readiness, we start by defining the set RDA
u (S) (for “Ready Do”), which collects all the atoms with an

unguarded action dou of a participant A in a system S.

7

Definition 7 (Ready do). For all S, A and u, we define the set of atoms RDA
u (S) as:

RDA
u (S) = {a | ∃�v,P,P�,Q,S� . S ≡ (�v)(A[dou a.P+P� | Q] | S�) ∧ u �∈�v}

Example 8. Consider the following system:

S = A[dox ā .doy b+ τ .doy a .doy c | (x)dox b̄]

We have that RDA
x (S) = {ā}, and RDA

y (S) = /0.

As seen in the above example for processes P2 and P3, readiness may also hold when the actions expected in the
contract ready sets are not immediately available in the process. To check if A[P] is ready for session s (in a system S),
we need to consider all the actions which (1) are exposed in P after some steps, taken by P itself or by the context, and
(2) are not preceded by other dos actions performed by A. These actions are collected in the set WRDA

s (S).

Definition 9 (Weak ready do). We write S
�=(A : dou)−−−−−−→ S� if:

∃B,π,σ. S
B : π,σ−−−→ S� ∧ (B �= A ∨ ∀a. π �= dou a)

We then define the set of atoms WRDA
u (S) as:

WRDA
u (S) = {a | ∃S� : S

�=(A : dou)−−−−−−→∗ S� and a ∈ RDA
u
�
S�
�
}

Example 10. Recall the system S from Ex. 8. We have that:

WRDA
x (S) = {ā}= RDA

x (S) WRDA
y (S) = {a,b}⊇ RDA

y (S) = /0

On channel y, the action a is weakly reachable through its τ prefix. Action b is not weakly reachable, because guarded
by a stuck dox. Action c is not weakly reachable as well, because preceded by another do on the same channel.

Example 11. Recall the process P3 = dot w . dos a+ dot z . dos b from Ex. 6. Consider the following system, where
participant A is involved in two sessions s and t (respectively, with B and C):

S = A[P3] | B[τ .dos ā .dos b̄] | C[dot w+dot z̄+ τ]
| s[A says a+b | B says ā⊕ b̄] | t[A says w+ z | C says w⊕ z̄]

In session t, A is immediately ready to perform either w or z, and thus her ready do set coincides with her weak ready
do set in t. The same holds for C, with the dual atoms w and z̄. Thus:

WRDA
t (S) = RDA

t (S) = {w,z}
WRDC

t (S) = RDC
t (S) = {w, z̄}

In session s, the ready do sets of both A and B are empty, because their actions are not immediately enabled. Before
they can be reached, the whole system S must first reduce, either with the contribution of C on session t (in the case
of A), or through a τ action (in the case of B). These reductions fall within the definition of their weak ready do sets,
which are accordingly non-empty.

WRDB
s (S) = {ā} ⊇ RDB

s (S) = /0 WRDA
s (S) = {a,b} ⊇ RDA

s (S) = /0

Notice that b̄ �∈ WRDB
s (S): in fact, b̄ is only reachable after B executes dos ā, thus requiring a reduction trace which

does not have the form S
�=(B : dos)−−−−−−→∗. Finally, we emphasize that, if C chooses to perform τ, then the actions in WRDA

s (S)
would not be reached. Indeed, Def. 9 only requires that each element in the set becomes reachable at the end of a
suitable (weak) reduction trace — but it does not prevent S from reducing along other paths.

A participant A is ready in a system S containing a session s[A says c | · · ·] iff A is (weakly) ready to do all the
actions in some ready set of c. Notice that A is vacuously ready in systems not containing sessions with contracts
stipulated by A.

8 4 ON HONESTY

Definition 12 (Readiness). We say that A is ready in S iff, whenever S ≡ (�u)S� for some�u and S� = s[A says c | · · ·] | S0,

∃X ∈ RS(c) .∀a �=e .
�
a∈X ∨ readya∈X =⇒ a∈WRDA

s (S
�)
�

A process A[P] is said to be honest when, for all contexts where A[P] may be engaged in, A is persistently ready in
all the reducts of that context. Notice that A[P] is vacuously honest when P advertises no contracts.

Informally, we shall say that A realizes a contract c in a session s in S when S has the form A[P] | s[A says c | · · ·] | · · · ,
and the readiness condition is satisfied in S and in all its reducts. Then, A[P] is honest when A realizes all the contracts
she advertises.

Definition 13 (Honesty). We say A[P] honest iff for all A-free S, and for all S� such that A[P] | S →∗ S�, A is ready in S�.

The A-freeness requirement in Def. 13 is used just to rule out those systems which already carry stipulated or latent
contracts of A outside A[P], e.g. A[P] | B[↓x A says pay | · · ·]. In the absence of A-freeness, the system could trivially
make A[P] dishonest.

Example 14. Consider the following system:

S def
= A[(x,y) (PA | fuse | fuse)] | B[PB] | C[PC]

PA
def
= tellA (↓x a .E) . tellA (↓y b ; E) .dox a .doy b

PB
def
= (z) (tellA (↓z b̄ .E) .doz b̄) PC

def
= (w) (tellA (↓w ā ; E) .0)

Even though A might apparently look honest, she is not. In fact, if we reduce S by performing all the tell and fuse
actions, we obtain:

S� = (s, t)(A[dot a .dos b] | B[dos b̄] | C[0] |
t[A says a .E | C says ā ; E] | s[A says b ; E | B says b̄ .E])

Here, S� cannot reduce further. Indeed, C (dishonestly) avoids to perform the internal choice required by his contract.
Then, A is stuck, waiting for a from C. Therefore, A is dishonest, because she does not perform the promised action b.
Formally, the dishonesty of A follows because RS(b ; E) = {{b}}, but b �∈ WRDA

s (S
�). Thus, A is not ready in S�, hence

not honest in S.

Our definition of honesty subsumes a fair scheduler, which eventually allows participants to fire persistently (weakly)
enabled do actions. This is illustrated by the following two examples.

Example 15. Consider the contract c = a⊕b, and let:

P def
= (x)

�
tellA ↓x c . fuse .X(x)

�
where X(x) def

= τ .X(x) + τ .dox a + τ .dox b

Let S = A[P] | S0, and assume that the fuse in P passes. Then, S reduces to S� ≡ (s)
�
A[X(s)] | s[A says c | · · ·] | S�0

�
.

Under an unfair scheduler, A could always take the first branch in X, while neglecting the others. Intuitively, this would
make A not respect her contract, which expects a or b. However, a fair scheduler will eventually choose one of the other
branches. Technically, the fair scheduler is rendered within Def. 9 and 13. Def. 9 considers a and b weakly enabled
in S�, because there exists a way to reach each of them. Since from any reduct of S� either a or b are reachable, then
Def. 13 considers A[P] honest.

Example 16. Consider the contract c = a+b and let:

P def
= (x)

�
tellA ↓x c . fuse .X(x)

�

X(x) def
= τ .X(x) + τ . (τ .X(x)+dox a) + τ . (τ .X(x)+dox b)

Let S = A[P] | S0. After the fuse, the system S reduces to S� ≡ (s)
�
A[X(s)] | s[A says c | · · ·] | S�0

�
. As in the previous

example, an unfair scheduler might make A not respect her contract. However, in all the reducts of S� both a and b
are reachable. Indeed, there is no branch which definitely commits to one of the two actions. Therefore, according to
Def. 13, A[P] is honest.

9

α .T α−→ T
[C-ALPHA]

T α−→ T �

T +T �� α−→ T �
[C-SUML]

T α−→ T �

T | T �� α−→ T � | T ��
[C-PARL]

T{rec X .T/X} α−→ T �

rec X .T α−→ T �
[C-REC]

rec X .T ≡ T{rec X .T/X} commutative monoidal laws for |, +

Figure 5.1: Channel type semantics.

5 A Type System for CO2

We now introduce a type system for CO2 . The main result is type safety (established in Th.52), which guarantees that
typeable participants are honest.

The type of a process P is a function f , which maps each channel (either session name or variable) to a channel type.
Channel types are behavioural types which essentially preserve the structure of P (branching, parallel composition,
recursion), while abstracting the actual prefixes and delimitations. Mainly, the prefixes of channel types distinguish
between nonblocking and possibly blocking actions.

In Sect. 5.1 we define channel types; then, in Sect. 5.2 we define process types and the type system for processes. In
Sect. 5.3 we present an auxiliary set of typing rules for CO2 systems, which are only needed to state subject reduction
and progress in Sect. 5.4. Type safety is established in Sect. 5.5.

5.1 Channel types
Channel types extend Basic Parallel Processes (BPPs [15]) by allowing prefixes of the following kinds: atoms (a,b, . . .),
nonblocking silent actions (τ), possibly blocking silent actions (τ?), conditional silent actions depending on observables
(τφ), and contract advertisement actions (�c�).
Definition 17 (Channel types). The syntax of channel types T and prefixes α is defined as follows:

T ::= 0
�� α .T

�� T +T
�� T | T

�� rec X .T
�� X

α ::= a
�� τ

�� τ?
�� τφ

�� �c�

We denote with T the set of all channel types.

The semantics of channel types is given in Def. 18, in terms of a labelled transition relation α−→.

Definition 18 (Channel type semantics). The relation α−→ is the least relation closed under the rules of Fig. 5.1.

The rules for α−→ are the standard ones for BPPs. Hereafter, we shall identify structurally congruent channel types.

Example 19. Consider the following CO2 process:

P = tellB ↓x ci |
�
tellB ↓y d .dox ā

�

where ci = ā⊕ b̄, and d is immaterial. We anticipate that the channel types associated by our type system to P on
channels x and y are, respectively:

Tx = �ci� | τ . ā Ty = τ | �d� . τ?

Note that the advertisement of ↓x ci is recorded in Tx, while that of ↓y d is abstracted there as a τ. Instead, the τ? in Ty
represents the fact that dox ā is not visible from channel y, and may potentially block the actions in its continuation. The
channel type Tx can reduce in several ways, e.g.:

Tx
�ci�−−−→ τ . ā τ−→ ā

ā−→ 0 (5)

Tx
τ−→ �ci� | ā

ā−→ �ci�
�ci�−−−→ 0 (6)

10 5 A TYPE SYSTEM FOR CO2

T
�c�−−→ T �

(C,T)→ (C∪{c},T �)
[A-TELL1]

T
�d�−−→ T �

(c,T)→ (c,T �)
[A-TELL2]

c ∈C
(C,T)→ (c,T)

[A-FUSE]

T α−→ T � α ∈ {τ,τ?,τφ}
(C,T)→ (C,T �)

[A-TAU1]
c a−→→� c� T a−→ T �

(c,T)→ (c�,T �)
[A-DO]

T α−→ T � α ∈ {τ,τ?,τφ}
(c,T)→ (c,T �)

[A-TAU2]
c ctx−→→� c�

(c,T)→ (c�,T)
[A-CTX]

Figure 5.2: Abstract processes semantics.

The execution of CO2 systems relies both on processes and on (advertised/stipulated) contracts. An abstraction of
the latter is then used to define an abstract semantics of processes.

Definition 20 (Abstract processes). An abstract process is either a pair (C,T) or a pair (c,T), where C is a set of
contracts, c is a contract, and T is a channel type.

Definition 21 (Abstract process semantics). The semantics of abstract processes is given in terms of a transition
relation →, which is the least relation closed under the rules of Fig. 5.2.

An abstract process (C,T) represents a process abstracted by T on some channel x, after the contracts in C have
been advertised. Instead, an abstract process (c,T) represents a process abstracted by T on some channel x, after the
contract c has been stipulated.

The set C grows when a channel type T in (C,T) performs a transition with label �c� (rule [A-TELL1]). After one of
the contracts in C has been stipulated (rule [A-FUSE]), the set is reduced to c. Rule [A-DO] models a do a action performed
by T , while rule [A-CTX] models an (unknown) action performed by the context. Further advertisements after contract
stipulation are neglected (rule A-TELL2). Notice that in rules [A-DO] and [A-CTX] contracts are reduced through the relation
−→→�. This relation abstracts the contract semantics −→→, by considering only the contract advertised by P (instead of the
whole bilateral contract). We leave the relation −→→� unspecified (see [3] for a possible instantiation), and we just require
that −→→� is decidable, and for all γ = A says c | B says d such that c �� d,

γ A says a−−−−→→ A says c� | B says d� =⇒ c a−→→� c�

γ B says b−−−−→→ A says c� | B says d� =⇒ c ctx−→→� c�

Example 22. Recall the trace (5) in Ex. 19. That induces the following two traces for the abstract process (/0,Tx).
Below, we annotate arrows with rule names from Fig. 5.2.

(/0,Tx) −−−−→
[A-TELL1]

({ci},τ . ā) −−−−→
[A-FUSE]

(ci,τ . ā) −−−−→
[A-TAU2]

(ci, ā) −−−→
[A-DO]

(E,0)
(/0,Tx) −−−−→

[A-TELL1]
({ci},τ . ā) −−−−→

[A-TAU1]
({ci}, ā) −−−−→

[A-FUSE]
(ci, ā) −−−→

[A-DO]
(E,0)

Instead, we are not able to follow trace (6), since (/0,Tx) −−−−→
[A-TAU1]

(/0,�ci� | ā) �−−−→
[A-DO]

. Intuitively, in (6) the action a is

performed before the contract ci is advertised — but this is not possible because of rule [A-DO].

We now introduce the abstract counterpart of the dynamic notion of honesty in Sect. 4. We shall follow the path
outlined for concrete processes: first we define when a channel type T is “ready for a contract”, and then when T is
honest.

In the case of concrete processes, readiness requires to match the “weak ready do” set of the process against the
ready sets of the contract (Def. 12). Similarly, here we shall match the “weak transitions” of a channel type with the
ready sets of the contract.

Indeed, such weak transitions abstract the weak ready do set. That is, if an abstract process can take a weak
transition a, then also the concrete one will do that. This under-approximation is needed to ensure the correctness of

5.1 Channel types 11

T a−→ T �

T a
=⇒ T �

T τ−→ T �� a
=⇒ T �

T a
=⇒ T �

T
�d�−−→ T �� a

=⇒ T �

T a
=⇒ T �

T
τφ−→ T �� a

=⇒ T � c �A
� φ

T a
=⇒ T �

Figure 5.3: Channel type semantics (weak transition, parameterised by A and c).

abstract honesty: if an abstract process is honest, then also the concrete one will be such (while the vice versa is not
always true).

Recall that the actions a in the weak ready do set (of session s) are those to be fired in a dos a by the concrete
process. Their abstract counterpart, i.e. labels of weak transitions, consider actions reachable through sequences of
non-blocking (abstract) transitions, which are included in the ready do set. Unlike in the concrete case, the context is
immaterial in determining weak transitions.

Weak transitions are defined in Fig. 5.3 as a labelled relation a
=⇒c

A (simply written as a
=⇒ when unambiguous). The

first two rules are standard: they just collapse the τ actions as usual. The third rule also collapses contract advertisement
actions, which are nonblocking as well. Possibly blocking actions τ? are not collapsed, while τφ (which abstract asku φ
prefixes) are dealt with the last rule: they abstract the CO2 prefix asku φ, and they are collapsed only if such ask is
nonblocking. The relation �A

� safely (under-) approximates this condition. We leave �A
� unspecified (just like � in

Sect. 3), and we only require that it respects the constraint in Def. 23 below.

Definition 23 (Abstract observability). We write c �A
� φ for any decidable relation between contracts and observables

satisfying:
c �A

� φ =⇒ ∀B .∀d . (c �� d =⇒ A says c | B says d � φ)

The definition of abstract readiness (Def. 24) follows along the lines of Def. 12.

Definition 24 (Abstract readiness). For a channel type T and a contract c, we say that T is abstractly ready for c iff:

∃X ∈ RS(c) .∀a �= e .
�
a ∈ X ∨ ready a ∈ X =⇒ T a

=⇒
�

Hereafter, when referring to properties of abstract entities, we shall omit the qualifier “abstractly”, e.g. we shall
write that a channel type is “ready”, instead of “abstractly ready”.

Honesty of abstract processes is defined similarly to Def. 13. In order to be honest, a process must keep itself
(abstractly) ready upon transitions. Readiness must be checked against all the contracts that may be stipulated along the
reductions of the abstract process, starting from the empty set of contracts.

Definition 25 (Abstract honesty). We say that:
• An abstract process (−,T) is honest iff

∀c,T � . (−,T)→∗ (c,T �) =⇒ T � is ready for c

• A channel type T is honest iff (/0,T) is honest.
Informally, we say that T realizes c whenever (c,T) is honest.

Example 26. Recall the type Tx = �ci� | τ .a and the contract ci = a⊕b from Ex. 22. To determine whether Tx is honest,
we examine all the reducts of the abstract process (/0,Tx) to check for readiness. We have the following cases:

1. (/0,Tx). Nothing to check, because no contracts have been advertised yet.
2. (/0,�ci� | ā). Similar to the previous case.
3. ({ci},τ .a). Nothing to check, because no contracts have been stipulated yet.
4. ({ci},a). Similar to the previous case.

5. (ci,τ .a). We have that τ .a is ready for ci, because for {a} ∈ RS(ci) = {{a},{b}}, we have τ .a a
=⇒.

6. (ci,a). We have that a is ready for ci, similarly to the previous case.
7. (E,0). We have that 0 is vacuously ready for E.

Summing up, we conclude that Tx is honest.

12 5 A TYPE SYSTEM FOR CO2

Th.27 below establishes that checking the honesty of a channel type T is decidable. Indeed, both abstract readiness
and abstract dishonesty are reachability properties. Abstract processes are the product of a finite state system (C and c
only admit finitely many states), and a Basic Parallel Process. This product can be modelled as a Petri net. Decidability
follows because reachability is decidable for Petri nets [15].

Theorem 27 (Decidability of abstract honesty). Abstract honesty is decidable.

Proof. See appendix A.2 on page 27.

5.2 Process types

Process types associate session names/variables to channel types, thus abstracting the behaviour of a process on all
channels. Additionally, we consider a special “dummy” channel ∗ �∈ N ∪V , where we collect type information about
unused channels.

Definition 28 (Process type). A CO2 process type is a function f : N ∪V ∪{∗}→ T.

Intuitively, our type system abstracts concrete prefixes of CO2 processes as actions of channel types. Such abstraction
is rendered as the mapping in Def. 29. We observe the behaviour of a process P on each channel, say u. When P
performs an action on one of its channels, say v, we have two cases:

• if v �= u, we will only observe a silent action, either nonblocking (τ) or blocking (τ?), depending on the concrete
prefix fired.

• if v = u, we may observe more information, depending on the concrete prefix fired.
For instance, if P advertises a contract c with a tell ↓v c, then the action �c� will be visible if v = u, while we shall just
observe a τ if v �= u (because tell is nonblocking).. Similarly, if P performs dov a we shall observe the action a if v = u
and τ? if v �= u (because do is blocking). Finally, if P executes a query asku φ we shall observe the conditional silent
action τφ if u = v and τ? otherwise. This allows for exploiting suitable static approximations of the relation � (see
Fig. 5.3).

Definition 29 (Prefix abstraction). For all u ∈ N ∪V ∪{∗}, we define the mapping [·]u from CO2 prefixes to channel
type prefixes as follows:

[τ]u = τ [fuse]u = τ? [tellA ↓v c]u = if v = u then �c� else τ

[dov a]u = if v = u thena else τ? [askv φ]u = if v = u then τφ else τ?

The typing judgments for processes have the form Γ � P : f , where Γ is a typing environment, giving types to
processes X(�v).

Definition 30 (Typing environment). A typing environment Γ is a partial function which associates process types to
constants X(�v).

We can now introduce the typing rules for CO2 processes.

Definition 31 (Typing rules for processes). The typing rules for processes are shown in Fig. 5.4.

Rule [T-SUM] abstracts the prefixes which guard the branches of a summation, according to Def. 29. The resulting
process type is expressed through the usual λ-notation. The type of a parallel composition is the pointwise parallel
composition of the component types (rule [T-PAR]). Rules [T-DEF] and [T-VAR] are mostly standard. Rule [T-VAR] retrieves
the type of a process variable from the typing environment, which is populated by rule [T-DEF]. The rule for typing
delimitations ([T-DEL]) is worth some extra comments. Assume that P is typed with f . Since u in not free (u)P, the
actions on channel u must not be observable in the typing of (u)P. To do that, in the typing of (u)P we discard the
information on u, by replacing it with the typing information on the “dummy” channel ∗. However, since this might hide
a dishonest behaviour on channel u, the rule also requires to check that f (u) is honest. Moreover, if the environment Γ
has typing information on channel u, this cannot be used while typing P. The typing environment Γ�=u, which discards
the information on u, is used to this purpose.

5.2 Process types 13

Γ � Pi : fi ∀i ∈ I
Γ � ∑i∈I πi .Pi : λu .∑i∈I [πi]u . fi(u)

[T-SUM]
Γ � P : f Γ � Q : g

Γ � P | Q : λu . f (u) | g(u)
[T-PAR]

X(�u) def
= P Γ{ f/X(�v)} � P{�v/�u} : f

Γ � X(�v) : f
[T-DEF]

Γ(X(�v)) = f
Γ � X(�v) : f

[T-VAR]

Γ �=u � P : f f (u) honest
Γ � (u)P : f{ f (∗)/u}

[T-DEL]

where Γ �=�v(Y (�w)) =

�
Γ(Y (�w)) if �w∩�v = /0
undefined otherwise

Figure 5.4: Typing rules for processes.

Example 32. Recall the process P2 = τ . dos a+ τ . dos b from Ex. 6. Its typing derivation is obtained by [T-SUM] as
follows:

� dos a : λu . [dos a]u = f1
[T-SUM]

� dos b : λu . [dos b]u = f2
[T-SUM]

� P2 : f = λu . [τ]u . f1(u)+ [τ]u . f2(u)
[T-SUM]

We have f (s) = τ .a+ τ .b, and for all u �= s, f (u) = f (∗) = τ . τ? + τ . τ?. In other words, the process type f performs
some visible actions when “observed” from channel s, while remaining “silent” on other channels. If we slightly
change the process, and consider instead P�

2 = τ .dos a+ τ .dot b, we have:

� dos a : λu . [dos a]u
[T-SUM]

= f1 � dot b : λu . [dot b]u = f �2
[T-SUM]

� P�
2 : f � = λu . [τ]u . f1(u)+ [τ]u . f �2(u)

[T-SUM]

and thus:
f �(s) = τ .a+ τ . τ? f �(t) = τ . τ? + τ .b ∀u �∈ {s, t} . f �(u) = f �(∗) = τ . τ? + τ . τ?

The type system assigns the same type (up-to structural congruence) to all non-free session names/variables,
including ∗, and such type may only contain actions τ and τ?.

Lemma 33 (Process typing and ∗). For all P, � P : f =⇒ f (∗) only contains τ and τ? actions.

Proof. See appendix A.3 on page 27.

Lemma 34 (Process typing and non-free names/vars). For all processes P and for all environments Γ: z �∈ fnv(P) ∧ Γ �
P : f =⇒ f (z) = f (∗).

Proof. See appendix A.4 on page 29.

Types are preserved by structural equivalence of processes (lemma 35 on this page).

Lemma 35 (Structural equivalence and process typing). For all CO2 processes P,P�: P≡P� ∧ Γ�P : f =⇒ Γ�P� : f .

Proof. See appendix A.5 on page 29.

We now define a partial order on process types. Intuitively, f � f � holds when f and f � behave in the same way
when observed on the same channels — except those in which f is silent.

Definition 36 (Process type order). We define a partial order � on process types as:

f � f � ⇐⇒ ∀u ∈ N ∪V ∪{∗} . f (u) = f �(u) ∨ f (u) = f �(∗)

Delimitation makes types smaller (i.e., “more silent”) w.r.t. �.

Lemma 37 (Delimitation and type ordering). � (u)P : f ∧ � P : f � =⇒ f � f �.

Proof. See appendix A.6 on page 30.

14 5 A TYPE SYSTEM FOR CO2

A process type f takes a transition on a CO2 prefix π when all its points f (u) agree to take a transition on the
abstract prefix [π]u.

Definition 38 (Process type reduction). We write f π−→ f � whenever ∀u ∈ N ∪V ∪{∗} . f (u)
[π]u−−−→ f �(u).

Example 39. Recall the process P1 = dos a+dos b+dos z from Ex. 6. Its typing is � P1 : f = λu . [dos a]u +[dos b]u +

[dos z]u. Let f � = λu .0. We have that f dos a−−−→ f �, since:

• [dos a]s = a and f (s) = a+b+ z
a−→ 0 = f �(s);

• ∀v �= s . [dos a]v = τ? and f (v) = τ? + τ? + τ?
τ?−−→ 0 = f �(v).

Note that, in this case, we also have f dos b−−−→ f � and f dos z−−−→ f �.

If f is the type associated to some process, and f (u) takes an abstract transition, then the whole f can take a
transition.

Lemma 40 (Channel type and process type reductions). For all inhabited types f , and for all u ∈ N ∪V ,

f (u) α−→ T � =⇒ ∃π, f � . [π]u = α ∧ f �(u) = T � ∧ f π−→ f �

Proof. See appendix A.7 on page 30.

We extend to process types the notion of honesty of Def. 25.

Definition 41 (Process type honesty). We say that f is honest iff f (u) is honest, for all u ∈ N ∪V ∪{∗}.

Note that, when � P : f , checking the honesty of f amounts to checking f (u) honest, for all u ∈ fnv(P). Actually,
by lemma 34 on the preceding page, f (u) = f (∗) on the other channels, and f (∗) is trivially honest because it cannot
advertise contracts (lemma 59 on page 20).

Lemma 42 (Process type honesty and ordering). f honest ∧ f � � f =⇒ f � honest.

Proof. See appendix A.8 on page 31.

5.3 System typing
The type system for processes is enough to guarantee whether a participant is honest. However, in order to establish
a type safety result we have to consider the transitions of a process within a system. Hence, in order to construct an
invariant of the system transitions (i.e., subject reduction), we extend typing also to systems.

Type judgments for systems are of two kinds. A judgment of the form �A S : f guarantees that a participant A in S
behaves according to f . Instead, a judgment of the form �A S� f means that A’s process is not in S, and S is guaranteed
to be compatible with a participant A which behaves as f . Our notion of compatibility is quite liberal: intuitively, it just
checks that the context S has not forged contracts of A.

Definition 43 (System typing). The relations �A S : f and �A S� f are the smallest relations closed under the rules in
Fig. 5.5.

Most rules in Fig. 5.5 are straightforward: for instance, rules [T-SAFREE*] tell that A-free systems are compatible with
all f . Rules [T-SFZ*] state that an f -compatible context (where f is the behaviour of A) may contain latent contracts of A
if f realizes such contracts.

Rule [T-SFUSED] is similar, except that it deals with stipulated contracts of A. Rule [T-SDEL2] is similar to rule [T-DEL]

for typing processes. Rule [T-SDEL1] is dual, reflecting the fact that the type f in [T-SDEL2] abstracts the behaviour of A
within S, while in [T-SDEL1] it represents the behaviour of A outside S.

Structural equivalence preserves system typing.

Lemma 44 (Structural equivalence and system typing). Whenever S ≡ S�,

�A S : f =⇒�A S� : f (7)
�A S� f =⇒�A S�� f (8)

5.4 Subject reduction and progress 15

�A 0� f
[T-SAFREE0]

B �= A

�A B[P]� f
[T-SAFREE1]

B �= A

�A C[↓x B says c]� f
[T-SAFREE2]

γ A-free
�A s[γ]� f

[T-SAFREE3]

�A B[↓s A says c]� f
[T-SFZS]

f (x) realizes c
�A B[↓x A says c]� f

[T-SFZ1]

�A B[K]� f �A B[K�]� f
�A B[K | K�]� f

[T-SFZ2]
f (s) realizes c

�A s[A says c | · · ·]� f
[T-SFUSED]

/0 � P : f
�A A[P] : f

[T-SA]
�A S� f{ f (∗)/u}
�A (u)S� f

[T-SDEL1]
�A S : f f (u) honest
�A (u)S : f{ f (∗)/u}

[T-SDEL2]

�A S� f �A S�� f
�A S | S�� f

[T-SPAR1]
�A S : f �A S�� f

�A S | S� : f
[T-SPAR2]

Figure 5.5: Typing rules for systems. The symmetric rules wrt to | for [T-SFUSED] and [T-SPAR2] are omitted.

Proof. See appendix A.9 on page 31.

The following is the system typing counterpart of lemma 37 on page 13.

Lemma 45 (Delimitation and type ordering for systems). �A (u)S : f ∧ �A S : f � =⇒ f � f �.

Proof. See appendix A.10 on page 35.

If a participant A[P] is typeable, then it can be inserted in any A-free system, and the composed system will remain
typeable.

Example 46. Consider a participant A[P] such that � P : f , and let S0 = B[Q] | C[↓x B says c], with B �= A. Notice
that S0 is A-free. The typing derivation of S = A[P] | S0 is:

� P : f
�A A[P] : f

[T-SA]

B �= A

�A B[Q]� f
[T-SAFREE1]

B �= A

�A C[↓x B says c]� f
[T-SAFREE2]

�A B[Q] | C[↓x B says c] = S0 � f
[T-SPAR1]

�A S = A[P] | S0 : f
[T-SPAR2]

Example 47. Consider now a non-A-free system S0, e.g. let S0 = B[Q] | C[↓x A says c], with B �= A. Notice that S0 is
not A-free. The typing derivation of S = A[P] | S0 is as follows:

� P : f
�A A[P] : f

[T-SA]

B �= A

�A B[Q]� f
[T-SAFREE1]

f (x) realizes c
�A C[↓x A says c]� f

[T-SFZ1]

�A B[Q] | C[↓x A says c] = S0 � f
[T-SPAR1]

�A S = A[P] | S0 : f
[T-SPAR2]

Notice that S is typeable with f only if f (x) realizes A’s contract c.

5.4 Subject reduction and progress
To establish subject reduction, we need to cope with the fact that the evaluation of a fuse prefix substitutes session
names for variables. This substitution also affects the type of the reduct process. For instance, consider the system
A[P] | S, where � P : f and f (x) = T . Assume that now the context S fires a fuse, which substitutes a fresh session
name s for x. The typing of the reduct system will accommodate this by mapping s to T , while x is mapped to f (∗),
because x is no longer free after the substitution.

Technically, this type substitution is obtained through the operator • , introduced in the following definition.

16 5 A TYPE SYSTEM FOR CO2

f •σ =





f if ∀u0 ∈�u . f (u0) = f (∗)
f{ f (∗)/u0}{ f (u0)/v} if ∃!u0 ∈�u . f (u0) �= f (∗)
undefined otherwise

(Γ•{v/u0})(Y (�w)) =
�

Γ(Y (�w{u0/v}))•{v/u0} if u0 �∈ �w
undefined otherwise

Figure 5.6: Type substitutions.

Definition 48 (Type substitutions). For a mapping σ of the form {v/�u} we define the substitutions f •σ on types and
Γ•σ on type environments as in Fig. 5.6.

When querying a typing environments on which a substitution is applied, we use the reverse substitution to retrieve
the original entry, as recorded by [T-DEF]; then, we actually apply the substitution to the retrieved type. Note that we do
not allow replaced variables to appear in the query.

Subject reduction guarantees that typeability is preserved by transitions. We need to distinguish between two cases,
according to which participant moves: either the participant A under typing, or any other participant B. If the transition
is done by A, then also its process type must take a transition, otherwise the type is preserved as is. In both cases, the
substitution σ is applied to the type, to deal with possible variable fusions.

Theorem 49 (Subject reduction). If �A S : f with f honest, then:

S
A : π,σ−−−→ S� =⇒ ∃ f � . f π−→ f � ∧ �A S� : f � •σ (9)

S
B : π,σ−−−→ S� =⇒ �A S� : f •σ (when B �= A) (10)

Proof. See appendix A.11 on page 35.

Progress guarantees that if a typeable process has a “non-blocking” type, then it can take a transition. More precisely,
if the type of P on channel u can take a weak transition with label a, then P will have a in its weak ready do set
(theorem 51 on the current page). To prove that, we first establish a progress result for systems. We write S �s φ when
S ≡ s[γ] | S�� and γ � φ, for some S�� and γ.

Lemma 50 (System progress). For all systems S, if �A S : f with f honest, and f π−→ f �, then: (a)
1. if π = τ, or π = tellB ↓w c, or π = asks φ and S �s φ,

∃S� .S
A : π, /0−−−→ S� ∧ �A S� : f �

2. if π = dou a, then a ∈ RDA
u (S).

Proof. See appendix A.12 on page 48.

Theorem 51 (Progress). For all S ≡ s[A says c | · · ·] | S�, if �A S : f with f honest, and f (s) a
==⇒c

A, then a ∈ WRDA
s (S).

Proof. See appendix A.13 on page 48.

5.5 Type safety
The main result of this paper is the type safety of CO2 processes (Th. 52). They ensure that a participant A with a
well-typed process P will always respect her contracts — both those already advertised, and those that she will publish
along her reductions. Therefore, A will never be considered culpable in any context.

Theorem 52 (Type safety on processes). For all participants A[P] with P closed, if � P : f then A[P] is honest.

Proof. See appendix A.14 on page 49.

5.5 Type safety 17

DXM =





� dox ship-a : λu . [dox ship-a]u = f 1
XM

[T-SUM]

� askx ship-a? .dox ship-a : λu . [askx ship-a?]u . f 1
XM

(u) = f 2
XM

[T-SUM]

� dox pay .askx ship-a? .dox ship-a : λu . [dox pay]u . f 2
XM

(u) = f 3
XM

[T-SUM]

� PXM = dox ok .dox pay .askx ship-a? .dox ship-a : λu . [dox ok]u . f 3
XM

(u) = fXM

[T-SUM]

XM(x)
de f
= PXM DXM

� XM(x) : fXM

[T-DEF]
XM(x)

de f
= PXM DXM

� XM(x) : fXM

[T-DEF]

� dox a .Xm(x)+dox b .Xm(x) : λu . [dox a]u . fXM (u)+ [dox b]u . fXM (u) = f 1
PM

[T-SUM]

� tellK ↓x c . (dox a .XM(x) + dox b .XM(x)) : λu . [tellK ↓x c]u . f 1
PM
(u) = f 2

PM

[T-SUM]

✘✘✘✘✘✘
f 2
PM
(x) honest

� � (x)(tellK ↓x c . (dox a .XM(x)+dox b .XM(x))) = PM : fM = f 2
PM
{ f 2

PM
(∗)/x}

[T-DEL]

Figure 5.7: Tentative typing derivation for the malicious food store. PXM is the body of XM(x) in Sect. 1.2, and its typing
derivation DXM is used in the (tentative) typing derivation of PM .

We conclude by checking the type safety of the food store example in Sect. 1.2: we analyse the malicious
implementation (Ex. 53), the non-malicious one (Ex. 54), and finally the honest one (Ex. 55).

Example 53. In Fig. 5.7 we give the (tentative) typing of the malicious food store process PM with

f 2
PM

(x) = �c� . (a . fXM (x) + b . fXM (x))

where fXM (x) = ok .pay . τship-a? . ship-a
The typing of PM fails because [T-DEL] requires f 2

PM
(x) to be honest, which is not the case. In fact, if the customer

selects b, f 2
PM

(x) takes the following transitions:

f 2
PM

(x)
�c�−−→ a . fXM (x)+b . fXM (x)

b−→ fXM (x)
ok−−→ pay . τship-a? . ship-a

pay−−−→ τship-a? . ship-a
τship-a?−−−−−→ ship-a

ship-a−−−−→ 0

Correspondingly, the abstract process (/0, f 2
PM

(x)) can evolve as:
�

/0, f 2
PM

(x)
�

→ ({c},a . fXM (x)+b . fXM (x))−−−−→
[A-FUSE]

(c,a . fXM (x)+b . fXM (x))

−−−→
[A-CTX]

�
ready b .

�
ok ; pay .ship-b ⊕ no

�
,a . fXM (x)+b . fXM (x)

�

→
�
ok ; pay .ship-b ⊕ no, fXM (x)

�

=
�

ok ; pay .ship-b ⊕ no, ok.pay.τship-a?.ship-a
�

→
�

pay .ship-b, pay . τship-a? . ship-a
�

−−−→
[A-CTX]

�
ready pay .ship-b, pay . τship-a? . ship-a

�

→
�

ship-b, τship-a? . ship-a
�

→
�
ship-b, ship-a

�

Notice that, in the last step, we have that ship-a is not ready for ship-b, hence A[PM] is not honest.

We consider now the non-malicious food store process.

Example 54. If we try to type PN, we incur in problems similar to the previous example. In fact, the top-level
delimitation of x requires applying rule [T-DEL], which mandates the related channel type to be honest. Such type is:

f 1
PN
(x) = τ . τ? . �c� .

�
a .ok . fXN (x) + b . fYN (x)

�

where fXN (x) = pay .
�

τship-a? . ship-a+ τship-b? . ship-b
�

fYN (x) = τ? .
�
ok . fXN (x)+ τ .no

�

18 6 CONCLUDING REMARKS AND RELATED WORK

�
/0, f 1

YH
(y)

� �
{cp},payP | cover . fXH (y)+ τ .

�
τ? | cancel

�� �
{cp},payP | τ? | cancel

�

�
cp,payP | cover . fXH (y)+ τ .

�
τ? | cancel

�� �
cp,payP | τ? | cancel

�

(E, fXH (y))
�
cover⊕ cancel,cover . fXH (y)+ τ .

�
τ? | cancel

�� �
cover⊕ cancel,τ? | cancel

�
(E,τ?)

[A-FUSE] [A-FUSE]

Figure 5.8: Abstract process reductions for the honest food store (YH(x) sub-process). The graph omits the τ? channel
type transitions.

In case of b orders, f 1
PN
(x) takes the following transitions:

f 1
PN
(x) τ−→ τ?−−→ �c�−−→ a .ok . fXN (x)+b . fYN (x)

b−→ fYN (x)
τ?−−→ ok . fXN (x)+ τ .no −→ . . .

The corresponding transitions of the abstract process are:
�

/0, f 1
PN
(x)

�
→∗ �c,a .ok . fXN (x)+b . fYN (x)

�
→∗ �ok ; pay .ship-b ⊕ no, fYN (x)

�

=
�
ok ; pay .ship-b ⊕ no,τ?.

�
ok. fXN(x)+τ.no

��

In the last step, we have that τ?.
�
ok. fXN(x)+τ.no

�
is not ready for ok ; pay .ship-b ⊕ no. Indeed, the prefix τ? is not

collapsed by ⇒. Therefore, f 1
PN
(x) is not honest.

We also have a similar negative result for the channel type:

f 1
PN
(y) = �cp� .payP . τ . (τ? . τ? . fXN (y) + τ? . fYN (y))

Here, the unavoidable τ? actions make the f 1
PN
(y) reduct non-ready for the reduct of cp after payP. As a result, PN is

untypeable.

Example 55. Finally, let us consider the last food store implementation, PH. Let PYH be the process under delimitation
of (y) in YH(x). Processes PYH and XH(x) have the following channel types:

fYH (y) = �cp� .payP |
�
cover . fXH (y)+ τ .

�
τ? | cancel

��

fYH (x) = τ . τ? | (τ? . fXH (x) + τ . (no | τ?))

fXH (x) = ok .pay .
�

τship-a? . ship-a+ τship-b? . ship-b
�

fXH (y) = fXH (∗) = τ? . τ? . (τ? . τ? + τ? . τ?)

The relevant transitions of the abstract processes above are shown in Fig. 5.8. By observing the abstract transitions
we detect that fYH (y) is honest, hence we can apply rule [T-DEL] to derive from the typing � PYH : fYH a type for YH(x).

The process under delimitation in PH is typeable as well, and it has the following channel type:

f 1
PH
(x) = �c� . (a . fXH (x) + b . fYH (x))

By examining all the states of the transitions of the abstract process we obtain that f 1
PH
(x) is honest. To do that, it

is crucial to ensure that the relation �# allows ⇒ to collapse the abstract prefixes τship-a? and τship-b?. Since PH is
typeable, type safety guarantees that the food store is honest.

6 Concluding Remarks and Related Work
Building on CO2 we gave a type system that allows for the static checking of honesty of systems. The channels onto
which a CO2 process interacts are typed with a behavioural type. Such type abstracts the actual prefixes of the process
while mimicking the non-deterministic and parallel branching of the process as well as its recursive behaviour. Our

19

typing enjoys the subject reduction (Th. 49) and progress properties (Th. 51). More importantly, type safety establishes
honesty of typeable processes, that is typeable processes honour their contracts in all contexts.

The process calculus CO2 has been introduced in [1], and in [3] it has been instantiated to a theory of bilateral
contracts inspired by [10]. We refer the reader to [3] for a comparison between our contract theory and the one in [10].
In [3] a process A is honest when, for each session she is engaged in, A is not definitely culpable. That is, A eventually
performs the actions her contract prescribes. The definition of honesty we adopt here is based on readiness rather than
culpability and we conjecture that it is equivalent to the notion of honesty in [3]. The main advantage of this novel
approach compared to [3] is that it simplifies the proof of the correctness of the static analysis of honesty, by more
directly relating abstract transitions with concrete ones. Also, the new definition helps in proving decidability of abstract
honesty, which was left open in [3].

In [4] (multiparty) asserted global types are used to adapt design-by-contract to distributed interactions. In our
framework, a participant declares its contract independently of the others; a CO2 primitive (fuse) tries then to combine
advertised contracts within a suitable agreement. In other words, one could think of our approach as based on
orchestration rather than choreography.

In [14] the progress property is checked only when participants engage at most in one session at a time. The type
system for honesty we give here allows participants to interleave many sessions as done in [13]. A crucial difference
with respect to [13] is that the typing discipline there requires the consistency of the local types of any two participants
interacting in a session. Namely, if in a session s, A and B are typed as TA and TB respectively and they interact then the
projection of TA with respect to B must be dual of the projection of TB with respect to A. In our type system instead,
participants are typed ’in isolation’ and to establish the honesty of a participant A our typing discipline only imposes
that the surrunding context is A-free.

Other approaches deal with safety properties, by generating monitors that check at runtime the interactions of
processes against their local contract (e.g.,[12, 11]).

The problem of checking if a contract c representing the behaviour of a service conforms to a role r of a given
choreography H has been investigated in [5]. Under suitable well-formed conditions, conformance of c is attained by
establishing a should testing pre-order between c and the projection of H with respect to role r. Similar techniques have
been used in [6] to define contract-based composition of services. A main difference with respect to our approach is
that [5, 6] do not consider conformance in the presence of dishonest participants. Actually, these papers focus on using
the testing pre-order to determine if the abstract behaviour of a service (i.e., its contract), comply with a role of the
choreography. Instead, we are interested in establishing weather a process abides by its own contract regardless its
execution context.

Contracts for service-level agreement have been modelled in [8] as constraint-semirings. Such model is used in [7]
for compiling clients and services so to guaranteed that, whener compatible, they progress harmoniously. This is
orthogonal to our approach since our aim is not to rule out “inconsistent” executions, rather to blame participants that
misbehave.

A Proofs

A.1 Additional Definitions and Lemmata
This section contains some definitions and auxiliary lemmata which are not part of the main treatment of this technical
report, but are used in the main proofs in the rest of the appendix.

Definition 56 (Free names/variables of a system wrt. a participant). For all participants A, and for all B,B� �= A, the
free names/variables of a system wrt. a participant A are defined as follows:

fnvA(S | S�) = fnvA(S)∪ fnvA(S�) fnvA((u)S) = fnvA(S)\{u}
fnvA(A[P]) = fnv(P) fnvA(B[P]) = /0

fnvA(C[↓x A says c]) = {x} fnvA(B[↓x C says c]) = /0
fnvA(s[A says c | B says d]) = {s} fnvA(s[B says c | B� says d]) = /0

The dual of the function above is defined as:

fnvA(S) =
�

B �=A

fnvB(S)

