327 research outputs found

    CD19 expression in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia pre- and post-treatment with blinatumomab.

    Get PDF
    AbstractBlinatumomab is a BiTE® (bispecific T‐cell engager) immuno‐oncology therapy, which has demonstrated significant activity in patients with relapsed or refractory B‐cell precursor acute lymphoblastic leukemia (R/R B‐ALL); however, a subset of patients relapse. Monitoring expression of cluster of differentiation (CD)19 in relapsed patients is critical to inform sequencing of subsequent therapies. The expression of CD19 in 59 pediatric patients with R/R B‐ALL was analyzed on the day of diagnosis of R/R B‐ALL and on days 15 and 29 of cycle 1 of blinatumomab. Most patients treated with one cycle of blinatumomab retained expression of CD19, and would therefore be eligible for subsequent anti‐CD19 CAR T‐cell therapy

    Long-term survival of patients with relapsed/refractory acute lymphoblastic leukemia treated with blinatumomab

    Get PDF
    Background: Blinatumomab is a CD19 BiTE (bispecific T-cell engager) immuno-oncology therapy that mediates the lysis of cells expressing CD19. Methods: A pooled analysis of long-term follow-up data from 2 phase 2 studies that evaluated blinatumomab in heavily pretreated adults with Philadelphia chromosome-negative, relapsed/refractory B-cell precursor acute lymphoblastic leukemia was conducted. Results: A total of 259 patients were included in the analysis. The median overall survival (OS) among all patients, regardless of response, was 7.5 months (95% confidence interval [CI], 5.5-8.5 months); the median follow-up time for OS was 36.0 months (range, 0.3-60.8 months). The median relapse-free survival (RFS) among patients who achieved a complete remission (CR) or complete remission with partial hematologic recovery (CRh) in the first 2 cycles (n = 123) was 7.7 months (95% CI, 6.2-10.0 months); the median follow-up time for RFS was 35.0 months (range, 9.5-59.5 months). OS and RFS plateaued with 3-year rates of 17.7% and 23.4%, respectively. The cumulative incidence function of the time to relapse, with death not due to relapse considered a competing risk, for patients who achieved a CR/CRh within 2 cycles of treatment also plateaued with a 3-year relapse rate of 59.3%. For patients who achieved a CR/CRh with blinatumomab followed by allogeneic hematopoietic stem cell transplantation while in continuous CR, the median OS was 18.1 months (95% CI, 10.3-30.0 months) with a 3-year survival rate of 37.2%. Conclusions: These data suggest that long-term survival is possible after blinatumomab therapy. Lay Summary: Immuno-oncology therapies such as blinatumomab activate the patient's own immune system to kill cancer cells. This study combined follow-up data from 2 blinatumomab-related clinical trials to evaluate long-term survival in patients with relapsed and/or refractory B-cell precursor acute lymphoblastic leukemia at high risk for unfavorable outcomes. Among patients who achieved a deep response with blinatumomab, one-third lived 3 years or longer. These findings suggest that long-term survival is possible after treatment with blinatumomab

    A phase Ib study of pertuzumab, a recombinant humanised antibody to HER2, and docetaxel in patients with advanced solid tumours

    Get PDF
    Pertuzumab represents the first in a new class of targeted therapeutics known as HER dimerisation inhibitors. We conducted a phase Ib study to determine the maximum-tolerated dose, the dose limiting toxicities (DLT), and pharmacokinetic (PK) interaction of docetaxel when administered in combination with pertuzumab. Initially, two dose levels of docetaxel (60 and 75 mg m−2) were explored in combination with a fixed dose of 1050 mg of pertuzumab; then two dose levels of docetaxel (75 and 100 mg m−2) were explored in combination following a fixed dose of 420 mg of pertuzumab with a loading dose of 840 mg. Both drugs were administered intravenously every 3 weeks. The latter dose of pertuzumab was allowed after an amendment to the original protocol when phase II data suggesting no difference in toxicity or activity between the 2 doses became available. Two patients out of two treated at docetaxel 75 mg m−2 in combination with pertuzumab 1050 mg suffered DLT (grade 3 diarrhoea and grade 4 febrile neutropaenia). Two out of five patients treated at docetaxel 100 mg m−2 in combination with pertuzumab 420 mg with a loading dose of 840 mg suffered DLT (grade 3 fatigue and grade 4 febrile neutropaenia). Stable disease was observed at four cycles in more than half of the patients treated and a confirmed radiological partial response with a >50% decline in PSA in a patient with hormone refractory prostate cancer were observed. There were no pharmacokinetic drug–drug interactions. The recommended phase II dose of this combination was docetaxel 75 mg m−2 and 420 mg pertuzumab following a loading dose of 840 mg

    Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer

    Get PDF
    Conceptual models of carcinogenesis typically consist of an evolutionary sequence of heritable changes in genes controlling proliferation, apoptosis, and senescence. We propose that these steps are necessary but not sufficient to produce invasive breast cancer because intraductal tumour growth is also constrained by hypoxia and acidosis that develop as cells proliferate into the lumen and away from the underlying vessels. This requires evolution of glycolytic and acid-resistant phenotypes that, we hypothesise, is critical for emergence of invasive cancer. Mathematical models demonstrate severe hypoxia and acidosis in regions of intraductal tumours more than 100 m from the basement membrane. Subsequent evolution of glycolytic and acid-resistant phenotypes leads to invasive proliferation. Multicellular spheroids recapitulating ductal carcinoma in situ (DCIS) microenvironmental conditions demonstrate upregulated glucose transporter 1 (GLUT1) as adaptation to hypoxia followed by growth into normoxic regions in qualitative agreement with model predictions. Clinical specimens of DCIS exhibit periluminal distribution of GLUT-1 and Na+/H+ exchanger (NHE) indicating transcriptional activation by hypoxia and clusters of the same phenotype in the peripheral, presumably normoxic regions similar to the pattern predicted by the models and observed in spheroids. Upregulated GLUT-1 and NHE-1 were observed in microinvasive foci and adjacent intraductal cells. Adaptation to hypoxia and acidosis may represent key events in transition from in situ to invasive cancer

    Real-world use of blinatumomab in adult patients with B-cell acute lymphoblastic leukemia in clinical practice : results from the NEUF study

    Get PDF
    Altres ajuts: Amgen (Europe) GmbHThis retrospective observational study (NEUF) included adult patients with B-cell acute lymphoblastic leukemia (B-cell ALL) who had received blinatumomab for the treatment of minimal residual disease-positive (MRD+) or relapsed/refractory (R/R) B-cell ALL via an expanded access program (EAP). Patients were eligible if blinatumomab was initiated via the EAP between January 2014 and June 2017. Patients were followed from blinatumomab initiation until death, entry into a clinical trial, the end of follow-up, or the end of the study period (December 31, 2017), whichever occurred first. Of the 249 adult patients included, 109 were MRD+ (83 Philadelphia chromosome-negative [Ph−] and 26 Philadelphia chromosome-positive [Ph+]) and 140 had a diagnosis of R/R B-cell ALL (106 Ph− and 34 Ph+). In the MRD+ group, within the first cycle of blinatumomab treatment, 93% (n = 49/53) of Ph− and 64% (n = 7/11) of Ph+ patients with evaluable MRD achieved an MRD response (MRD <0.01%). Median overall survival (OS) was not reached over a median follow-up time of 18.5 months (Ph−, 18.8 [range: 5.1-34.8] months; Ph+, 16.5 [range: 1.8-31.6] months). In the R/R group, within two cycles of blinatumomab, 51% of Ph− and 41% of Ph+ patients achieved complete hematologic remission (CR/CRh/CRi), and 83% of Ph− and 67% of Ph+ MRD-evaluable patients in CR/CRh/CRi achieved an MRD response. Median (95% confidence interval) OS was 12.2 (7.3-24.2) months in the R/R Ph− subgroup and 16.3 (5.3-not estimated) months in the R/R Ph+ subgroup. This large, real-world data set of adults with B-cell ALL treated with blinatumomab confirms efficacy outcomes from published studies

    Molecular response with blinatumomab in relapsed/refractory B-cell precursor acute lymphoblastic leukemia

    Get PDF
    Minimal residual disease (MRD), where leukemic cell levels are lower than the morphologic detection threshold, is the most important prognostic factor for acute lymphoblastic leukemia (ALL) relapse during first-line chemotherapy treatment and is standard of care in treatment monitoring and decision making. Limited data are available on the prognostic value of MRD response after relapse. We evaluated the relationship between MRD response and outcomes in blinatumomab-treated adults with relapsed/refractory (R/R) B-cell precursor ALL. Of 90 patients with complete remission (CR) or CR with partial hematologic recovery (CRh), 64 (71.1%) achieved a complete MRD response (no detectable individual rearrangements of immunoglobulin/T-cell receptor genes by polymerase chain reaction [PCR] at a minimum sensitivity level of 10-4). Eleven patients had MRD <10-4. Therefore, overall, 75 (83.3%) experienced an MRD response (no detectable MRD or detectable MRD) measured by PCR within the first 2 treatment cycles. Overall survival (OS) and relapse-free survival (RFS) were significantly longer in patients who achieved CR/CRh and MRD response (median, 20.6 and 9.0 months, respectively) compared with CR/CRh patients without MRD response (median, 12.5 and 2.3 months, respectively). In conclusion, longer durations of OS and RFS associated with MRD response support the value of achieving MRD response and its use as a prognostic factor for blinatumomab treatment in R/R ALL. This trial was registered at www.clinicaltrials.gov as #NCT01466179

    Blinatumomab in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia: RIALTO expanded access study final analysis

    Full text link
    The safety and efficacy of blinatumomab, a CD3/CD19-directed bispecific molecule, were examined in an open-label, single-arm, expanded access study (RIALTO). Children (>28 days and <18 years) with CD19+ relapsed/refractory B-cell precursor acute lymphoblastic leukemia (R/R B-ALL) received up to 5 cycles of blinatumomab by continuous infusion (cycle: 4 weeks on/2 weeks off). The primary end point was incidence of adverse events. Secondary end points included complete response (CR) and measurable residual disease (MRD) response within the first 2 cycles and relapse-free survival (RFS), overall survival (OS), and allogeneic hematopoietic stem cell transplant (alloHSCT) after treatment. At final data cutoff (10 January 2020), 110 patients were enrolled (median age, 8.5 years; 88% had ≥5% baseline blasts). A low incidence of grade 3 or 4 cytokine release syndrome (n = 2; 1.8%) and neurologic events (n = 4; 3.6%) was reported; no blinatumomab-related fatal adverse events were recorded. The probability of response was not affected by the presence of cytogenetic/molecular abnormalities. Median OS was 14.6 months (95% confidence interval [CI]: 11.0-not estimable) and was significantly better for MRD responders vs MRD nonresponders (not estimable vs 9.3; hazard ratio, 0.18; 95% CI: 0.08-0.39). Of patients achieving CR after 2 cycles, 73.5% (95% CI: 61.4%-83.5%) proceeded to alloHSCT. One-year OS probability was higher for patients who received alloHSCT vs without alloHSCT after blinatumomab (87% vs 29%). These findings support the use of blinatumomab as a safe and efficacious treatment of pediatric R/R B-ALL. This trial was registered at www.clinicaltrials.gov as #NCT02187354

    Читательская культура в современном обществе

    Full text link
    Additional file 4. Available patient numbers (N) for analysis of distribution profiles of CD8+ and CD4+ T cells and subsets in Fig. 4

    Transforming growth factor‐beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin‐1 and scleraxis

    Full text link
    Introduction: Transforming growth factor‐beta (TGF‐β) is a well‐known regulator of fibrosis and inflammation in many tissues. During embryonic development, TGF‐β signaling induces expression of the transcription factor scleraxis, which promotes fibroblast proliferation and collagen synthesis in tendons. In skeletal muscle, TGF‐β has been shown to induce atrophy and fibrosis, but the effect of TGF‐β on muscle contractility and the expression of scleraxis and atrogin‐1, an important regulator of muscle atrophy, were not known. Methods: We treated muscles from mice with TGF‐β and measured force production, scleraxis, procollagen Iα2, and atrogin‐1 protein levels. Results: TGF‐β decreased muscle fiber size and dramatically reduced maximum isometric force production. TGF‐β also induced scleraxis expression in muscle fibroblasts, and increased procollagen Iα2 and atrogin‐1 levels in muscles. Conclusion: These results provide new insight into the effect of TGF‐β on muscle contractility and the molecular mechanisms behind TGF‐β–mediated muscle atrophy and fibrosis. Muscle Nerve 45: 55–59, 2012Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89462/1/22232_ftp.pd
    corecore