18 research outputs found

    GPa grade cryogenic strength yet ductile high-entropy alloys prepared by powder metallurgy

    No full text
    The carbon-doped Fe50Mn30Co10Cr10 HEAs with excellent cryogenic mechanical properties were prepared by powder metallurgy, and their tensile deformation behavior and strain-hardening mechanism were investigated. The yield strength of the HEAs at 77 K improved from 489.7 to 1087.0 MPa as the carbon content increased from 0 to 3 at. %, which mainly stems from the increased lattice friction caused by the addition of carbon and the cryogenic environment; the ultimate tensile strength of the HEAs doped with 2 and 3 at. % carbon reached 1.2 and 1.4 GPa, respectively, while the elongation to fracture reached 31.6 % and 16.8 %, respectively, which is mainly attributed to the joint activation of microbands, twinning, and HCP phase. The deformation mechanism gradually changed from deformation-induced phase transformation to microbands and twinning with increasing carbon content under cryogenic conditions. This study provides a meaningful reference for the design and development of powder metallurgy HEAs with excellent performance in cryogenic applications

    Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production

    Get PDF
    Rational design of noble metal catalysts with the potential to leverage efficiency is vital for industrial applications. Such an ultimate atom-utilization efficiency can be achieved when all noble metal atoms exclusively contribute to catalysis. Here, we demonstrate the fabrication of a wafer-size amorphous PtSex film on a SiO2 substate via a low-temperature amorphization strategy, which offers single-atom-layer Pt catalysts with high atom-utilization efficiency (~26 wt%). This amorphous PtSex (1.2 < x < 1.3) behaves as a fully activated surface, accessible to catalytic reactions, and features a nearly 100% current density relative to a pure Pt surface and reliable production of sustained high-flux hydrogen over a 2 inch wafer as a proof-of-concept. Furthermore, an electrolyser is demonstrated to generate a high current density of 1,000 mA cm−2. Such an amorphization strategy is potentially extendable to other noble metals, including the Pd, Ir, Os, Rh and Ru elements, demonstrating the universality of single-atom-layer catalysts
    corecore