66 research outputs found
Methyl 7,8-diacetoxy-11-oxo-5-(2-oxopyrrolidin-1-yl)-7,9-epoxycyclopenta[4,5]pyrido[1,2-a]quinoline-10-carboxylate sesquihydrate
The title compound, C26H28N2O9·1.5H2O, the product of an acid-catalysed Wagner–Meerwein skeletal rearrangement, crystallizes as a sesquihydrate with the O atom of one of the two independent water molecules occupying a special position on a twofold axis. The organic molecule comprises a fused pentacyclic system containing two five-membered rings (cyclopentane and tetrahydrofuran) and three six-membered rings (piperidinone, tetrahydropyridine and benzene). The five-membered rings have the usual envelope conformations, and the central six-membered piperidinone and tetrahydropyridine rings adopt boat and sofa conformations, respectively. In the crystal, there are three independent O—H⋯O hydrogen bonds, which link the organic molecules and water molecules into complex two-tier layers parallel to (001). The layers are further linked into a three-dimensional framework by attractive intermolecular carbonyl–carbonyl interactions
8a-Methyl-5,6,8,8a,9,10-hexahydro-10,12a-epoxyisoindolo[1,2-a]isoquinolinium iodide
The title compound, C17H18NO+·I−, is an adduct resulting from an intramolecular Diels–Alder reaction of methallyl chloride with 3,4-dihydro-1-furylisoquinoline. The cation comprises a fused pentacyclic system containing three five-membered rings (dihydropyrrole, dihydrofuran and tetrahydrofuran) and two six-membered rings (tetrahydropyridine and benzene). The five-membered rings have the usual envelope conformations, and the central six-membered tetrahydropyridine ring adopts the unsymmetrical half-boat conformation. In the crystal, cations and iodide anions are bound by weak intermolecular hydrogen-bonding interactions into a three-dimensional framework
(6aS*,6bS*,11R*,11aR*)-6-(2-Furylmethyl)-5,12-dioxo-5,6,6a,6b,7,11,11a,12-octahydrofuro[3′,2′:5,6]isoindolo[2,1-a]quinazoline-11-carboxylic acid
The title compound, C23H18N2O6, is the product of an intramolecular thermal cycloaddition within 1-malein-2-[(E)-2-(2-furyl)vinyl]-4-oxo-3,4-dihydroquinazoline. The molecule comprises a previously unknown fused pentacyclic system containing two five-membered rings (2-pyrrolidinone and furan) and three six-membered rings (benzene, 2,3-dihydro-4-pyrimidinone and dihydrocyclohexane). The central five-membered pyrrolidinone ring has the usual envelope conformation. The six-membered dihydropyrimidinone and dihydrocyclohexane rings adopt a half-boat and a half-chair conformation, respectively. The dihedral angle between the planes of the terminal benzene and furan rings is 45.99 (7)°. In the crystal, O—H⋯O hydrogen bonds link the molecules into centrosymmetric dimers. Weak C—H⋯O hydrogen bonds consolidate further the crystal packing, which exhibits π–π interactions, with a short distance of 3.556 (3) Å between the centroids of benzene rings of neighbouring molecules
Dimethyl 11,13-dimethyl-16-[1,2-bis(methoxycarbonyl)ethenyl]-12-oxo-16,17-dioxa-18-azahexacyclo[7.5.1.11,4.16,9.110,14.05,15]octadeca-2,7-diene-2,3-dicarboxylate
The title compound, C27H29NO11, is a product of the tandem ‘domino’ Diels–Alder reaction. The molecule comprises a fused hexacyclic system containing four five-membered rings (two dihydrofuran and two tetrahydrofuran) in the usual envelope conformations and two six-membered rings (tetrahydropyridinone and piperidine) adopting slightly flattened boat and chair conformations, respectively. The dispositions of the carboxylate substituents relative to each other are determined by both steric reasons and intermolecular C—H⋯O hydrogen bonding and attractive antiparallel C=O⋯C=O interactions [C⋯O = 2.995 (2) Å]
Inhibition of 6-hydroxydopamine-induced oxidative damage by 4,5-dihydro-3H-2-benzazepine N-oxides
A number of new analogs of 3,3-dimethyl-4,5-dihydro-3H-2-benzazepine 2-oxide, structurally related to the nitrone spin trap α-phenyl-N-tert-butylnitrone (PBN), were synthesized and evaluated for their activity in vitro as protectants against oxidative stress induced in rat brain mitochondria by 6-hydroxydopamine (6-OHDA), a neurotoxin producing experimental model of Parkinson's disease (PD). As assessed by a fluorimetric assay, all 2-benzazepine-based nitrones were shown to decrease hydroxyl radicals (radical dotOH) generated during 6-OHDA autoxidation. The inhibition effects on the radical dotOH formation shown by the 5-gem-dimethyl derivatives, 2–4 times higher than those of the corresponding 5-methyl derivatives, were attributed to the flattening effect of the 5-gem-dimethyl group on the azepine ring, which should enhance nitrone reactivity and/or increase stability of the radical adducts. In contrast, owing to steric hindrance, a methyl group to C-1 diminishes the radical dotOH-scavenging activity of the nitrone group. All the assayed compounds were more potent than PBN as inhibitors of 6-OHDA-induced lipid peroxidation (LPO) and protein carbonylation (PCO), taken as an indicator of mitochondrial protein oxidative damage. The most promising antioxidant (compound 11), bearing 5-gem-dimethyl and spiro C-3 cyclohexyl groups, highlighted in this study as the best features, inhibited LPO and PCO with IC50 values of 20 and 48 μM, respectively, showing a potency improvement over PBN of two order magnitude. Both LPO and PCO inhibition potency data were found primarily related to the radical dotOH-scavenging activities, whereas lipophilicity plays a role in improving the LPO (but not PCO) inhibition, as a statistically valuable two-parameter equation proved.The Spanish authors thank the Ministerio de Educación y Ciencia and the Europe Regional Development Fund (Madrid, Spain, Grants BFI2003-00493 and SAF2007-66114) for financial support. The Italian authors thank the Italian Ministry for Education Universities and Research (MIUR, Rome, Italy; PRIN 2004, Grant No. 2004037521_006) for financial support.S
Benzenesulfonamide Analogs : Synthesis, Anti-GBM Activity and Pharmacoprofiling
The tropomyosin receptor kinase A (TrkA) family of receptor tyrosine kinases (RTKs) emerge as a potential target for glioblastoma (GBM) treatment. Benzenesulfonamide analogs were identified as kinase inhibitors possessing promising anticancer properties. In the present work, four known and two novel benzenesulfonamide derivatives were synthesized, and their inhibitory activities in TrkA overexpressing cells, U87 and MEF cells were investigated. The cytotoxic effect of benzenesulfonamide derivatives and cisplatin was determined using trypan blue exclusion assays. The mode of interaction of benzenesulfonamides with TrkA was predicted by docking and structural analysis. ADMET profiling was also performed for all compounds to calculate the drug likeness property. Appropriate QSAR models were developed for studying structure–activity relationships. Compound 4-[2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfon-amide (AL106) and 4-[2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide (AL107) showed acceptable binding energies with the active sites for human nerve growth factor receptor, TrkA. Here, AL106 was identified as a potential anti-GBM compound, with an IC50 value of 58.6 µM with a less toxic effect in non-cancerous cells than the known chemotherapeutic agent, cisplatin. In silico analysis indicated that AL106 formed prominent stabilizing hydrophobic interactions with Tyr359, Ser371, Ile374 and charged interactions with Gln369 of TrkA. Furthermore, in silico analysis of all benzenesulfonamide derivatives revealed that AL106 has good pharmacokinetics properties, drug likeness and toxicity profiles, suggesting the compound may be suitable for clinical trial. Thus, benzenesulfonamide analog, AL106 could potentially induce GBM cell death through its interaction with TrkA and might be an attractive strategy for developing a drug targeted therapy to treat glioblastoma.Peer reviewe
Synthesis, X-ray characterization and theoretical study of 3 a ,6:7,9 a-diepoxybenzo [de] isoquinoline derivatives: on the importance of F⋯O interactions
The synthesis, X-ray characterization and Hirshfeld surface analysis of a series of tetrahydrodiepoxybenzo[de]isoquinoline derivatives obtained by the tandem [4+2] cycloaddition between perfluorobut-2-yne dienophile (F3C–C≡C–CF3) and a row of N,N-bis(furan-2-ylmethyl)-4-Rbenzenesulfonamides (bis-dienes, R = Me, F, Cl, Br, I) are reported in this manuscript. The implementation of kinetic/thermodynamic control allowed to obtain both “pincer”- and “domino”-types adducts in good/moderate yields. In the solid state, most of the pincer adducts form self-assembled dimers (R = Me, Cl, Br, I) and, contrariwise, the domino adducts form 1D supramolecular chains, which are described in detail herein. Remarkably, in the self-assembled dimers, bifurcated halogen bonds involving one fluorine atom of the CF3 group and both O-atoms of sulfonamide are formed, which have been analyzed using DFT calculations, QTAIM and NCIplot computational tools.Fil: Grudova, Mariya V.. Peoples’ Friendship University; RusiaFil: Gil, Diego Mauricio. Universidad Nacional de Tucumán. Instituto de Biotecnología Farmacéutica y Alimentaria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Biotecnología Farmacéutica y Alimentaria; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química Orgánica; ArgentinaFil: Khrustalev, Victor N.. Peoples’ Friendship University; Rusia. Institute of Organic Chemistry ND. Zelinsky; RusiaFil: Nikitina, Eugeniya V.. Peoples’ Friendship University; RusiaFil: Sinelshchikova, Anna A.. Academy of Sciences. Frumkin Institute of Physical Chemistry and Electrochemistry; RusiaFil: Grigoriev, Mikhail S.. Academy of Sciences. Frumkin Institute of Physical Chemistry and Electrochemistry; RusiaFil: Kletskov, Alexey V.. Peoples’ Friendship University; RusiaFil: Frontera, Antonio. Universidad de las Islas Baleares; EspañaFil: Zubkov, Fedor I.. Peoples’ Friendship University; Rusi
Intramolecular sp2-sp3 disequalization of chemically identical sulfonamide nitrogen atoms: single crystal X-Ray diffraction characterization, hirshfeld surface analysis and DFT calculations of N-substituted hexahydro-1,3,5-triazines
In this manuscript, the synthesis and single crystal X-ray diffraction characterization of four N-substituted 1,3,5-triazinanes are reported along with a detailed analysis of the noncovalent interactions observed in the solid state architecture to these compounds, focusing on C–H···π and C–H···O H-bonding interactions. These noncovalent contacts have been characterized energetically by using DFT calculations and also by Hirshfeld surface analysis. In addition, the supramolecular assemblies have been characterized using the quantum theory of “atoms-in-molecules” (QTAIM) and molecular electrostatic potential (MEP) calculations. The XRD analysis revealed a never before observed feature of the crystalline structure of some molecules: symmetrically substituted 1,3,5-triazacyclohexanes possess two chemically identical sulfonamide nitrogen atoms in different sp2 and sp3-hybridizations.Fil: Kletskov, Alexey V.. University of Russia; RusiaFil: Gil, Diego Mauricio. Universidad Nacional de Tucumán. Instituto de Biotecnología Farmacéutica y Alimentaria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Biotecnología Farmacéutica y Alimentaria; ArgentinaFil: Frontera, Antonio. Universidad de las Islas Baleares; EspañaFil: Zaytsev, Vladimir P.. University of Russia; RusiaFil: Merkulova, Natalia L.. University of Russia; RusiaFil: Beltsova, Ksenia R.. University of Russia; RusiaFil: Sinelshchikova, Anna A.. University of Russia; RusiaFil: Grigoriev, Mikhail S.. University of Russia; RusiaFil: Grudova, Mariya V.. University of Russia; RusiaFil: Zubkov, Fedor I.. University of Russia; Rusi
Structural versatility of the quasi-aromatic Möbius type zinc(II)-pseudohalide complexes : experimental and theoretical investigations
In this contribution we report for the first time fabrication, isolation, structural and theoretical characterization of the quasi-aromatic Mobius complexes [Zn(NCS)(2)L-I] (1), [Zn-2(mu(1,1)-N-3)(2)(L-I)(2)][ZnCl3(MeOH)](2)center dot 6MeOH (2) and [Zn(NCS)L-II](2)[Zn(NCS)(4)]center dot MeOH (3), constructed from 1,2-diphenyl-1,2-bis((phenyl(pyridin-2-yl)methylene)hydrazono)ethane (L-I) or benzilbis(acetylpyridin-2-yl)methylidenehydrazone (L-II), respectively, and ZnCl2 mixed with NH4NCS or NaN3. Structures 1-3 are dictated by both the bulkiness of the organic ligand and the nature of the inorganic counter ion. As evidenced from single crystal X-ray diffraction data species 1 has a neutral discrete heteroleptic mononuclear structure, whereas, complexes 2 and 3 exhibit a salt-like structure. Each structure contains a Zn-II atom chelated by one tetradentate twisted ligand L-I creating the unusual Mobius type topology. Theoretical investigations based on the EDDB method allowed us to determine that it constitutes the quasi-aromatic Mobius motif where a metal only induces the pi-delocalization solely within the ligand part: 2.44|e| in 3, 3.14|e| in 2 and 3.44|e| in 1. It is found, that the degree of quasi-aromatic pi-delocalization in the case of zinc species is significantly weaker (by similar to 50%) than the corresponding estimations for cadmium systems - it is associated with the Zn-N bonds being more polar than the related Cd-N connections. The ETS-NOCV showed, that the monomers in 1 are bonded primarily through London dispersion forces, whereas long-range electrostatic stabilization is crucial in 2 and 3. A number of non-covalent interactions are additionally identified in the lattices of 1-3
- …