396 research outputs found

    New Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints

    Full text link
    We present new interstellar dust models which have been derived by simultaneously fitting the far-ultraviolet to near-infrared extinction, the diffuse infrared (IR) emission and, unlike previous models, the elemental abundance constraints on the dust for different interstellar medium abundances, including solar, F and G star, and B star abundances. The fitting problem is a typical ill-posed inversion problem, in which the grain size distribution is the unknown, which we solve by using the method of regularization. The dust model contains various components: PAHs, bare silicate, graphite, and amorphous carbon particles, as well as composite particles containing silicate, organic refractory material, water ice, and voids. The optical properties of these components were calculated using physical optical constants. As a special case, we reproduce the Li & Draine (2001) results, however their model requires an excessive amount of silicon, magnesium, and iron to be locked up in dust: about 50 ppm (atoms per million of H atoms), significantly more than the upper limit imposed by solar abundances of these elements, about 34, 35, and 28 ppm, respectively. A major conclusion of this paper is that there is no unique interstellar dust model that simultaneously fits the observed extinction, diffuse IR emission, and abundances constraints.Comment: 70 pages, 23 figures, accepted for publication in the Astrophysical Journal Supplemen

    Effect of the Boron Addition on the structure of the Ni-Mn-Co-In alloys

    Get PDF
    Series of Ni45:5xCo4:5Mn36:6In13:4Bx (at.%, x = 0, 0.05, 0.1, 0.5, 1.0) polycrystalline magnetic shape memory alloys produced by the induction melting were examined in terms of the structure and transition temperatures. The structure of the alloys was determined by the X–ray diffraction and transmission electron microscopy. Scanning electron microscopy and electron backscattering diffraction techniques were applied to obtain the microstructure and texture of alloys. Boron addition promotes nucleation of the second Co–rich and In–poor phase as well as causes decrease of the martensitic transformation temperatures

    An Analysis of the Shapes of Interstellar Extinction Curves. VI. The Near-IR Extinction Law

    Full text link
    We combine new HST/ACS observations and existing data to investigate the wavelength dependence of NIR extinction. Previous studies suggest a power-law form, with a "universal" value of the exponent, although some recent observations indicate that significant sight line-to-sight line variability may exist. We show that a power-law model provides an excellent fit to most NIR extinction curves, but that the value of the power, beta, varies significantly from sight line-to-sight line. Therefore, it seems that a "universal NIR extinction law" is not possible. Instead, we find that as beta decreases, R(V) [=A(V)/E(B-V)] tends to increase, suggesting that NIR extinction curves which have been considered "peculiar" may, in fact, be typical for different R(V) values. We show that the power law parameters can depend on the wavelength interval used to derive them, with the beta increasing as longer wavelengths are included. This result implies that extrapolating power law fits to determine R(V) is unreliable. To avoid this problem, we adopt a different functional form for NIR extinction. This new form mimics a power law whose exponent increases with wavelength, has only 2 free parameters, can fit all of our curves over a longer wavelength baseline and to higher precision, and produces R(V) values which are consistent with independent estimates and commonly used methods for estimating R(V). Furthermore, unlike the power law model, it gives R(V)'s that are independent of the wavelength interval used to derive them. It also suggests that the relation R(V) = -1.36 E(K-V)/E(B-V) - 0.79 can estimate R(V) to +/-0.12. Finally, we use model extinction curves to show that our extinction curves are in accord with theoretical expectations.Comment: To appear in the Astrophysical Journa

    Ethical issues of decision making and communication in health care: An intercultural and interfaith perspective

    Full text link
    The purpose of this research was to elucidate the main ethical issues that arise during decision-making and medical communication influenced by interfaith and intercultural differences. The statistical analysis of information retrieved from the United Nations official web site, as well as the analysis of secondary data taken from the literature sources, were applied to achieve the goal set. The outcomes of the study reveal that in Germany, Russia, and the United States, ethical problems in decision-making and communication in healthcare exist since the cultures and faiths of these countries’ populations vary. Moreover, beliefs become more diverse due to the increasing number of migrants and medical tourists. It was found what ethical peculiarities of a particular religion can affect decision-making and communication during the provision of medical services to patients undergoing treatment in Germany, Russia, or the US. The results of the research can be applied in the scientific studies on ethical issues that arise in healthcare, as well as in the process of setting diagnosis, providing preventive care, treatment, transplantation, and euthanasia. © 2021 Journal of Pharmaceutical Negative Result

    Light Scattering from Volcanic-Sand Particles in Deposited and Aerosol Form

    Full text link
    The light-scattering properties of volcanic sand collected in Iceland are studied here to characterize the sand particles and develop a reference for future remote-sensing observations. While such sand is common in Iceland, the smaller-size fraction can be readily transported by winds and found in the atmosphere at distant locations. The sand appears dark when deposited on a surface due to the high optical absorption of the material. Therefore, atmospheric regions containing such particles during a dust storm may absorb sunlight considerably, causing redistribution of solar energy. Here, we measure the angular scattered-light intensity and degree of linear polarization from the sand. This is done with two experimental apparatuses, the Cosmic Dust Laboratory (CoDuLab) at the Institute de Astrofísica de Andalucía (IAA) and the goniospectropolarimeter (FIGIFIGO) at the Finnish Geospatial Research Institute (FGI). Two scattering-scenarios of practical interest for remote-sensing applications are considered: (1) single sand-particles suspended in aerosol as an optically thin cloud, and (2) the same particles deposited on a substrate. We also model the measurements with the discrete dipole approximation to estimate the complex-valued refractive index m, where we find that m ≈ 1.6 + 0.01i at λ = 647 nm. Lastly, we present a comparative analysis of the polarimetric response of the sand particles with that reported in the literature for carbon-soot, another highly absorbing atmospheric contaminant. © 2019.This research was partially supported by the Academy of Finland Project no. 260027 and the COST Action MP1104 “Polarization as a tool to study the Solar System and beyond”. NZ acknowledges Magnus Ehrnrooth Foundation for the research travel support. This work also has been partially supported by contracts AYA2015-67152-R and RTI2018-095330-B-I00 . We thank P. Dagsson Waldhauserová, O. Arnalds, A. Virkkula, O. Meinander, and J. Svensson for their help obtaining the samples and for relevant discussions. We acknowledge the use of imagery provided by services from NASA's Global Imagery Browse Services (GIBS), part of NASA's Earth Observing System Data and Information System (EOSDIS). We also would like to thank reviewers for their constructive reviews

    Selective 5HT3 antagonists and sensory processing: A systematic review

    Get PDF
    Ondansetron is a selective serotonin (5HT3) receptor antagonist that is under evaluation as an adjunctive treatment for schizophrenia, and a novel treatment for hallucinations in Parkinson’s disease. Ondansetron reverses sensory gating deficits and improves visuoperceptual processing in animal models of psychosis, but it is unclear to what extent preclinical findings have been replicated in humans. We systematically reviewed human studies that evaluated the effects of ondansetron and other 5HT3 receptor antagonists on sensory gating deficits or sensory processing. Of 11 eligible studies, eight included patients with schizophrenia who were chronically stable on antipsychotic medication; five measured sensory gating using the P50 suppression response to a repeated auditory stimulus; others included tests of visuoperceptual function. Three studies in healthy participants included tests of visuoperceptual and sensorimotor function. A consistent and robust finding (five studies) was that ondansetron and tropisetron (5HT3 antagonist and α7-nicotinic receptor partial agonist) improved sensory gating in patients with schizophrenia. Tropisetron also improved sustained visual attention in non-smoking patients. There was inconsistent evidence of the effects of 5HT3 antagonists on other measures of sensory processing, but interpretation was limited by the small number of studies, methodological heterogeneity and the potential confounding effects of concomitant medication in patients. Despite these limitations, we found strong evidence that selective 5HT3 antagonists (with or without direct α7-nicotinic partial agonist effects) improved sensory gating. Future studies should investigate how this relates to potential improvement in neurocognitive symptoms in antipsychotic naive patients with prodromal or milder symptoms, in order to understand the clinical implications

    Perspectives on Interstellar Dust Inside and Outside of the Heliosphere

    Full text link
    Measurements by dust detectors on interplanetary spacecraft appear to indicate a substantial flux of interstellar particles with masses exceeding 10^{-12}gram. The reported abundance of these massive grains cannot be typical of interstellar gas: it is incompatible with both interstellar elemental abundances and the observed extinction properties of the interstellar dust population. We discuss the likelihood that the Solar System is by chance located near an unusual concentration of massive grains and conclude that this is unlikely, unless dynamical processes in the ISM are responsible for such concentrations. Radiation pressure might conceivably drive large grains into "magnetic valleys". If the influx direction of interstellar gas and dust is varying on a ~10 yr timescale, as suggested by some observations, this would have dramatic implications for the small-scale structure of the interstellar medium.Comment: 13 pages. To appear in Space Science Review

    Magnetic Fields in Evolved Stars: Imaging the Polarized Emission of High-Frequency SiO Masers

    Full text link
    We present Submillimeter Array observations of high frequency SiO masers around the supergiant VX Sgr and the semi-regular variable star W Hya. The J=5-4, v=1 28SiO and v=0 29SiO masers of VX Sgr are shown to be highly linearly polarized with a polarization from ~5-60%. Assuming the continuum emission peaks at the stellar position, the masers are found within ~60 mas of the star, corresponding to ~100 AU at a distance of 1.57 kpc. The linear polarization vectors are consistent with a large scale magnetic field, with position and inclination angles similar to that of the dipole magnetic field inferred in the H2O and OH maser regions at much larger distances from the star. We thus show for the first time that the magnetic field structure in a circumstellar envelope can remain stable from a few stellar radii out to ~1400 AU. This provides further evidence supporting the existence of large scale and dynamically important magnetic fields around evolved stars. Due to a lack of parallactic angle coverage, the linear polarization of masers around W Hya could not be determined. For both stars we observed the 28SiO and 29SiO isotopologues and find that they have a markedly different distribution and that they appear to avoid each other. Additionally, emission from the SO 5_5-4_4 line was imaged for both sources. Around W Hya we find a clear offset between the red- and blue-shifted SO emission. This indicates that W Hya is likely host to a slow bipolar outflow or a rotating disk-like structure.Comment: 8 pages, 7 figures, accepted for publication in ApJ. Online table will be available with published versio
    corecore