44 research outputs found

    Excited-State OH Masers and Supernova Remnants

    Get PDF
    The collisionally pumped, ground-state 1720 MHz maser line of OH is widely recognized as a tracer for shocked regions and observed in star-forming regions and supernova remnants. Whereas some lines of excited states of OH have been detected and studied in star-forming regions, the subject of excited-state OH in supernova remnants-where high collision rates are to be expected-is only recently being addressed. Modeling of collisional excitation of OH demonstrates that 1720, 4765, and 6049 MHz masers can occur under similar conditions in regions of shocked gas. In particular, the 6049 and 4765 MHz masers become more significant at increased OH column densities where the 1720 MHz masers begin to be quenched. In supernova remnants, the detection of excited-state OH line maser emission could therefore serve as a probe of regions of higher column densities. Using the Very Large Array, we searched for excited-state OH in the 4.7, 7.8, 8.2, and 23.8 GHz lines in four well-studied supernova remnants with strong 1720 MHz maser emission (Sgr A East, W28, W44 and IC 443). No detections were made, at typical detection limits of around 10 mJy beam-1. The search for the 6 GHz lines were done using Effelsberg since the VLA receivers did not cover those frequencies, and are reported on in an accompanying letter (Fish and coworkers). We also cross-correlated the positions of known supernova remnants with the positions of 1612 MHz maser emission obtained from blind surveys. No probable associations were found, perhaps except in the Sgr A East region. The lack of detections of excited-state OH indicates that the OH column densities suffice for 1720 MHz inversion but not for inversion of excited-state transitions, consistent with the expected results for C-type shocks

    HALOGAS observations of NGC 5023 and UGC 2082: Modeling of non-cylindrically symmetric gas distributions in edge-on galaxies

    Get PDF
    In recent years it has become clear that the vertical structure of disk galaxies is a key ingredient for understanding galaxy evolution. In particular, the presence and structure of extra-planar gas has been a focus of research. The Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey aims to provide a census on the rate of cold neutral gas accretion in nearby galaxies as well as a statistically significant set of galaxies that can be investigated for their extra-planar gas properties. In order to better understand the the vertical structure of the neutral hydrogen in the two edge-on HALOGAS galaxies NGC 5023 and UGC 2082 we construct detailed tilted ring models. The addition of distortions resembling arcs or spiral arms significantly improves the fit of the models to these galaxies. In the case of UGC 2082 no vertical gradient in rotational velocity is required in either symmetric models nor non-symmetric models to match the observations. The best fitting model features two arcs of large vertical extent that may be due to accretion. In the case of NGC 5023 a vertical gradient is required in symmetric models (dV/dz =−14.9±3.8-14.9\pm3.8 km s−1^{-1} kpc−1^{-1}) and its magnitude is significantly lowered when non-symmetric models are considered (dV/dz =−9.4±3.8-9.4\pm3.8 km s−1^{-1} kpc−1^{-1}). Additionally it is shown that the underlying disk of NGC 5023 can be made symmetric, in all parameters except the warp, in non-symmetric models. In comparison to the "classical" modeling these models fit the data significantly better with a limited addition of free parameters.Comment: 27 Pages, 22 Figures. Accepted for publication in MNRA

    The EMPIRE Survey: Systematic Variations in the Dense Gas Fraction and Star Formation Efficiency from Full-Disk Mapping of M51

    Full text link
    We present the first results from the EMPIRE survey, an IRAM large program that is mapping tracers of high density molecular gas across the disks of nine nearby star-forming galaxies. Here, we present new maps of the 3-mm transitions of HCN, HCO+, and HNC across the whole disk of our pilot target, M51. As expected, dense gas correlates with tracers of recent star formation, filling the "luminosity gap" between Galactic cores and whole galaxies. In detail, we show that both the fraction of gas that is dense, f_dense traced by HCN/CO, and the rate at which dense gas forms stars, SFE_dense traced by IR/HCN, depend on environment in the galaxy. The sense of the dependence is that high surface density, high molecular gas fraction regions of the galaxy show high dense gas fractions and low dense gas star formation efficiencies. This agrees with recent results for individual pointings by Usero et al. 2015 but using unbiased whole-galaxy maps. It also agrees qualitatively with the behavior observed contrasting our own Solar Neighborhood with the central regions of the Milky Way. The sense of the trends can be explained if the dense gas fraction tracks interstellar pressure but star formation occurs only in regions of high density contrast.Comment: 7 pages, 5 figures, ApJL accepte

    Excited-state OH Mainline Masers in AU Geminorum and NML Cygni

    Full text link
    Excited-state OH maser emission has previously been reported in the circumstellar envelopes of only two evolved stars: the Mira star AU Geminorum and the hypergiant NML Cygni. We present Very Large Array (VLA) observations of the 1665, 1667, and excited-state 4750 MHz mainline OH transitions in AU Gem and Expanded Very Large Array (EVLA) observations of the excited-state 6030 and 6035 MHz OH mainline transitions in NML Cyg. We detect masers in both mainline transitions in AU Gem but no excited-state emission in either star. We conclude that the excited-state OH emission in AU Gem is either a transient phenomenon (such as for NML Cyg outlined below), or possibly an artifact in the data, and that the excited state OH emission in NML Cyg was generated by an episode of enhanced shock between the stellar mass-loss and an outflow of the Cyg OB2 association. With these single exceptions, it therefore appears that excited-state OH emission indeed should not be predicted nor observable in evolved stars as part of their normal structure or evolution.Comment: ApJ Letter, accepted, 4 pages, 2 figure

    Clustered Star Formation in the Center of NGC 253 Contributes to Driving the Ionized Nuclear Wind

    Get PDF
    We present new 3 mm observations of the ionized gas toward the nuclear starburst in the nearby (D similar to 3.5 Mpc) galaxy NGC 253. With ALMA, we detect emission from the H40 alpha and He40 alpha lines in the central 200 pc of this galaxy on spatial scales of similar to 4 pc. The recombination line emission primarily originates from a population of approximately a dozen embedded super star clusters in the early stages of formation. We find that emission from these clusters is characterized by electron temperatures ranging from 7000 to 10,000 K and measures an average singly ionized helium abundance Y (+) = 0.25 +/- 0.06, both of which are consistent with values measured for H ii regions in the center of the Milky Way. We also report the discovery of unusually broad line width recombination line emission originating from seven of the embedded clusters. We suggest that these clusters contribute to the launching of the large-scale hot wind observed to emanate from the central starburst. Finally, we use the measured recombination line fluxes to improve the characterization of overall embedded cluster properties, including the distribution of cluster masses and the fractional contribution of the clustered star formation to the total starburst, which we estimate is at least 50%.Peer reviewe

    Spatially Resolved 12CO(2–1)/12CO(1–0) in the Starburst Galaxy NGC 253 : Assessing Optical Depth to Constrain the Molecular Mass Outflow Rate

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of 12CO(1–0) and 12CO(2–1) in the central 40'' (680 pc) of the nuclear starburst galaxy NGC 253, including its molecular outflow. We measure the ratio of brightness temperature for CO(2–1)/CO(1–0), r 21, in the central starburst and outflow-related features. We discuss how r 21 can be used to constrain the optical depth of the CO emission, which impacts the inferred mass of the outflow and consequently the molecular mass outflow rate. We find r 21 lesssim 1 throughout, consistent with a majority of the CO emission being optically thick in the outflow, as it is in the starburst. This suggests that the molecular outflow mass is 3–6 times larger than the lower limit reported for optically thin CO emission from warm molecular gas. The implied molecular mass outflow rate is 25–50 M ⊙ yr−1, assuming that the conversion factor for the outflowing gas is similar to our best estimates for the bulk of the starburst. This is a factor of 9–19 times larger than the star formation rate in NGC 253. We see tentative evidence for an extended, diffuse CO(2–1) component.Peer reviewe

    Observations of the 6 Centimeter Lines of OH in Evolved (OH/IR) Stars

    Get PDF
    Recent observational and theoretical advances have called into question traditional OH maser pumping models in evolved (OH/IR) stars. The detection of excited-state OH lines would provide additional constraints to discriminate amongst these theoretical models. In this Letter, we report on VLA observations of the 4750 MHz and 4765 MHz lines of OH toward 45 sources, mostly evolved stars. We detect 4765 MHz emission in the star forming regions Mon R2 and LDN 1084, but we do not detect excited-state emission in any evolved stars. The flux density and velocity of the 4765 MHz detection in Mon R2 suggests that a new flaring event has begun.Comment: 4 pages, to appear in ApJ

    The Survey of Water and Ammonia in the Galactic Center (SWAG): Molecular Cloud Evolution in the Central Molecular Zone

    Get PDF
    The Survey of Water and Ammonia in the Galactic Center (SWAG) covers the Central Molecular Zone (CMZ) of the Milky Way at frequencies between 21.2 and 25.4 GHz obtained at the Australia Telescope Compact Array at ∼0.9\sim 0.9 pc spatial and ∼2.0\sim 2.0 km s−1^{-1} spectral resolution. In this paper, we present data on the inner ∼250\sim 250 pc (1.4∘1.4^\circ) between Sgr C and Sgr B2. We focus on the hyperfine structure of the metastable ammonia inversion lines (J,K) = (1,1) - (6,6) to derive column density, kinematics, opacity and kinetic gas temperature. In the CMZ molecular clouds, we find typical line widths of 8−168-16 km s−1^{-1} and extended regions of optically thick (τ>1\tau > 1) emission. Two components in kinetic temperature are detected at 25−5025-50 K and 60−10060-100 K, both being significantly hotter than dust temperatures throughout the CMZ. We discuss the physical state of the CMZ gas as traced by ammonia in the context of the orbital model by Kruijssen et al. (2015) that interprets the observed distribution as a stream of molecular clouds following an open eccentric orbit. This allows us to statistically investigate the time dependencies of gas temperature, column density and line width. We find heating rates between ∼50\sim 50 and ∼100\sim 100 K Myr−1^{-1} along the stream orbit. No strong signs of time dependence are found for column density or line width. These quantities are likely dominated by cloud-to-cloud variations. Our results qualitatively match the predictions of the current model of tidal triggering of cloud collapse, orbital kinematics and the observation of an evolutionary sequence of increasing star formation activity with orbital phase
    corecore