9 research outputs found

    DASA: Difficulty-Aware Semantic Augmentation for Speaker Verification

    Full text link
    Data augmentation is vital to the generalization ability and robustness of deep neural networks (DNNs) models. Existing augmentation methods for speaker verification manipulate the raw signal, which are time-consuming and the augmented samples lack diversity. In this paper, we present a novel difficulty-aware semantic augmentation (DASA) approach for speaker verification, which can generate diversified training samples in speaker embedding space with negligible extra computing cost. Firstly, we augment training samples by perturbing speaker embeddings along semantic directions, which are obtained from speaker-wise covariance matrices. Secondly, accurate covariance matrices are estimated from robust speaker embeddings during training, so we introduce difficultyaware additive margin softmax (DAAM-Softmax) to obtain optimal speaker embeddings. Finally, we assume the number of augmented samples goes to infinity and derive a closed-form upper bound of the expected loss with DASA, which achieves compatibility and efficiency. Extensive experiments demonstrate the proposed approach can achieve a remarkable performance improvement. The best result achieves a 14.6% relative reduction in EER metric on CN-Celeb evaluation set.Comment: Accepted by ICASSP 202

    Mechanical transistors for logic-with-memory computing

    Full text link
    As a potential revolutionary topic in future information processing, mechanical computing has gained tremendous attention for replacing or supplementing conventional electronics vulnerable to power outages, security attacks, and harsh environments. Despite its potential for constructing intelligent matter towards nonclassical computing systems beyond the von Neumann architecture, most works on mechanical computing demonstrated that the ad hoc design of simple logic gates cannot fully realize a universal mechanical processing framework involving interconnected arithmetic logic components and memory. However, such a logic-with-memory computing architecture is critical for complex and persistent state-dependent computations such as sequential logic. Here we propose a mechanical transistor (M-Transistor), abstracting omnipresent temperatures as the input-output mechanical bits, which consists of a metamaterial thermal channel as the gate terminal driving a nonlinear bistable soft actuator to selectively connect the output terminal to two other variable thermal sources. This M-Transistor is an elementary unit to modularly form various combinational and sequential circuits, such as complex logic gates, registers (volatile memory), and long-term memories (non-volatile memory) with much fewer units than the electronic counterparts. Moreover, they can establish a universal processing core comprising an arithmetic circuit and a register in a compact, reprogrammable network involving periodic read, write, memory, and logic operations of the mechanical bits. Our work contributes to realizing a non-electric universal mechanical computing architecture that combines multidisciplinary engineering with structural mechanics, materials science, thermal engineering, physical intelligence, and computational science.Comment: 25 pages, 4 figures, Articl

    Few-photon single ionization of cold rubidium in the over-the-barrier regime

    Full text link
    Photoionization of the rubidium (Rb) atoms cooled in a magneto-optical trap, characterized by the coexistence of the ground 5S1/2S_{1/2} and the excited 5P3/2P_{3/2} states, is investigated experimentally and theoretically with the 400 nm femtosecond laser pulses at intensities of I=3×109I=3\times10^9 W/cm2^2 - 4.5×10124.5\times10^{12} W/cm2^2. Recoil-ion momentum distribution (RIMD) of Rb+^+ exhibits rich ring-like structures and their energies correspond to one-photon ionization of the 5P3/2P_{3/2} state, two-photon and three-photon ionizations of the 5S1/2S_{1/2} state, respectively. With the increasing of II, we find that experimental signals near zero-momentum (NZM) in RIMDs resulted from the 5P3/2P_{3/2} state enhance dramatically and its peaked Rb+^+ momenta dwindle obviously while that from the 5S1/2S_{1/2} state is maintained. Meanwhile, the ion-yield ratio of the 5S1/2S_{1/2} over the 5P3/2P_{3/2} states varies from II to I1.5I^{1.5} as II increases. These features indicate a transition from perturbative ionization to strong-perturbative ionization for the 5P3/2P_{3/2} state. Numerical simulations by solving the time-dependent Schr\"odinger equation (TDSE) can qualitatively explain the measurements of RIMD, photoion angular distributions, as well as ion-yield ratio. However, some discrepancies still exist, especially for the NZM dip, which could stem from the electron-electron correlation that is neglected in the present TDSE simulations since we have adopted the single-active-electron approximation

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Multifield-Modulated Spintronic Terahertz Emitter Based on a Vanadium Dioxide Phase Transition

    No full text
    The efficient generation and active modulation of terahertz (THz) waves are strongly required for the development of various THz applications such as THz imaging/spectroscopy and THz communication. In addition, due to the increasing degree of integration for the THz optoelectronic devices, miniaturizing the complex THz system into a compact unit is also important and necessary. Today, integrating the THz source with the modulator to develop a powerful, easy-to-adjust, and scalable or on-chip THz emitter is still a challenge. As a new type of THz emitter, a spintronic THz emitter has attracted a great deal of attention due to its advantages of high efficiency, ultrawide band, low cost, and easy integration. In this study, we have proposed a multifield-modulated spintronic THz emitter based on the VO2/Ni/Pt multilayer film structure with a wide band region of 0–3 THz. Because of the pronounced phase transition of the integrated VO2 layer, the fabricated THz emitter can be efficiently modulated via thermal or electric stimuli with a modulation depth of about one order of magnitude; the modulation depths under thermal stimulation and electrical stimulation were 91.8% and 97.3%, respectively. It is believed that this multifield modulated spintronic THz emitter will provide various possibilities for the integration of next-generation on-chip THz sources and THz modulators
    corecore