9 research outputs found

    Spent lithium manganate batteries for sustainable recycling: A review

    Get PDF
    Lithium-ion batteries (LIBs) account for the majority of energy storage devices due to their long service life, high energy density, environmentally friendly, and other characteristics. Although the cathode materials of LIB led by LiFePO4 (LFP), LiCoO2 (LCO), and LiNixCoyMn1-x-yO2 (NCM) occupy the majority of the market share at present, the demand of LiMn2O4 (LMO) cathode battery is also increasing year by year in recent years. With the rising price of various raw materials of LIBs and the need of environmental protection, the efficient recycling of spent LIBs has become a hot research topic. At present, the recycling of spent LIBs mainly focuses on LFP, LCO, and NCM batteries. However, with the continuous improvement of people’s safety of LIBs, LiMnxFe1-xPO4 (LMFP) batteries show better potential, which also improves the recycling value of LMO batteries. Therefore, this paper reviews current methods of spent LMO recovery, focusing on the characteristics of the recovery and separation process, which can serve as a reference for subsequent research on LMO recovery, increasing environmentally friendly recovery routes. Finally, the future development direction of LIBs recycling is prospected. Overall, this review is helpful to understand the current progress of LMO battery recycling

    Constructions of Self-Orthogonal Codes From Hulls of BCH Codes and Their Parameters

    No full text
    International audienc

    Superstructure-free synthesis and multi-objective optimization of supercritical COâ‚‚ cycles

    No full text
    The optimization of the supercritical CO2 cycle structures is mostly experience-intensive and computation-demanding. Using the superstructure-free method can effectively realize computer-aided intelligent construction and optimization of cycle configurations. In this paper, an improved superstructure-free algorithm is proposed which goes beyond the state-of-the-art methods by expanding the searching space and evaluation matrices. The improved algorithm can intelligently and simultaneously optimize the cycle structure and design parameters by considering both the net power output and specific investment cost as objective functions. By applying the algorithm, several previously unseen cycle structures were retrieved, and the maximum net power output increases by a range of 15.45% to 37.71%. The optimal cycle obtained by entropy weight and TOPSIS analysis of the Pareto solution set is a cascaded configuration of a double compression intercooling cycle and a basic cycle through sharing cooling process, which achieves a net power output of 37.75 kW and a specific investment cost of 5.33 $/W. The improved superstructure-free algorithm can also be applied to other thermodynamic cycles and can greatly contribute to the intelligent configuration design and optimization of similar thermodynamic cycles.The work is supported by Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (No. 2020K009)

    Meditative Movements for Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis

    No full text
    Objective. Physical activity plays a specific role in the fundamental aspect of diabetes care. It is necessary to develop exercise programs for these patients. The aim of this systematic review is to summarize current evidence regarding the effectiveness of meditative movement in patients with type 2 diabetes. Methods. The following databases were searched: PubMed, CENTRAL, Web of Science, Ovid LWW, and EMBASE. Two independent investigators searched and screened the studies by finding duplications, excluding irrelevant titles and abstracts, and then selecting eligible studies by reviewing full texts. 21 studies fulfilled the inclusion criteria. Meta-analyses were performed on glycated hemoglobin (HbA1c), fasting blood glucose (FBG) and postprandial blood glucose (PPBG), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and body mass index (BMI). Results. Meta-analyses showed that meditative movements significantly improved FBG, HbA1c, PPBG, TC, LDL-C, and HDL-C. No improvement was found in BMI. Conclusions. The results demonstrated a favorable effect or tendency of meditative movements to improve blood glucose and blood lipid levels in patients with type 2 diabetes mellitus. The special effects of meditative movements in type 2 diabetes mellitus patients need further research

    Mitigating Strain Accumulation in Li<sub>2</sub>RuO<sub>3</sub> via Fluorine Doping

    Get PDF
    Lithium ruthenium oxide (Li2RuO3) is an archetypal lithium rich cathode material (LRCM) with both cation and anion redox reactions (ARRs). Commonly, the instability of oxygen redox activities has been regarded as the root cause of its performance degradation in long-term operation. However, we find that not triggering ARRs does not improve and even worsens its cyclability due to the detrimental strain accumulation induced by Ru redox activities. To solve this problem, we demonstrate that F-doping in Li2RuO3 can alter its preferential orientation and buffer interlayer repulsion upon Ru redox, both of which can mitigate the strain accumulation along the c-axis and improve its structural stability. This work highlights the importance of optimizing cation redox reactions in LRCMs and provides a new perspective for their rational design
    corecore