864 research outputs found

    Nonlinear interplay of Alfven instabilities and energetic particles in tokamaks

    Full text link
    The confinement of energetic particles (EP) is crucial for an efficient heating of tokamak plasmas. Plasma instabilities such as Alfven Eigenmodes (AE) can redistribute the EP population making the plasma heating less effective, and leading to additional loads on the walls. The nonlinear dynamics of toroidicity induced AE (TAE) is investigated by means of the global gyrokinetic particle-in-cell code ORB5, within the NEMORB project. The nonperturbative nonlinear interplay of TAEs and EP due to the wave-particle nonlinearity is studied. In particular, we focus on the nonlinear modification of the frequency, growth rate and radial structure of the TAE, depending on the evolution of the EP distribution in phase space. For the ITPA benchmark case, we find that the frequency increases when the growth rate decreases, and the mode shrinks radially. This nonlinear evolution is found to be correctly reproduced by means of a quasilinear model, namely a model where the linear effects of the nonlinearly modified EP distribution function are retained.Comment: Submitted to Plasma Phys. Control. Fusio

    Kolmogorov-Sinai entropy in field line diffusion by anisotropic magnetic turbulence

    Full text link
    The Kolmogorov-Sinai (KS) entropy in turbulent diffusion of magnetic field lines is analyzed on the basis of a numerical simulation model and theoretical investigations. In the parameter range of strongly anisotropic magnetic turbulence the KS entropy is shown to deviate considerably from the earlier predicted scaling relations [Rev. Mod. Phys. {\bf 64}, 961 (1992)]. In particular, a slowing down logarithmic behavior versus the so-called Kubo number R1R\gg 1 (R=(δB/B0)(ξ/ξ)R = (\delta B / B_0) (\xi_\| / \xi_\bot), where δB/B0\delta B / B_0 is the ratio of the rms magnetic fluctuation field to the magnetic field strength, and ξ\xi_\bot and ξ\xi_\| are the correlation lengths in respective dimensions) is found instead of a power-law dependence. These discrepancies are explained from general principles of Hamiltonian dynamics. We discuss the implication of Hamiltonian properties in governing the paradigmatic "percolation" transport, characterized by RR\to\infty, associating it with the concept of pseudochaos (random non-chaotic dynamics with zero Lyapunov exponents). Applications of this study pertain to both fusion and astrophysical plasma and by mathematical analogy to problems outside the plasma physics. This research article is dedicated to the memory of Professor George M. ZaslavskyComment: 15 pages, 2 figures. Accepted for publication on Plasma Physics and Controlled Fusio

    Hepatocyte growth factor/scatter factor stimulates the Ras-guanine nucleotide exchanger

    Get PDF
    Hepatocyte growth factor/scatter factor (HGF/SF) induces mitogenesis and cell dissociation upon binding to the protein-tyrosine kinase receptor encoded by the MET proto-oncogene (p190MET). The signal transduction pathways downstream from the receptor activation are largely unknown. We show that HGF/SF activates Ras protein. HGF/SF stimulation of metabolically labeled A549 cells raised the amount of Ras-bound radiolabeled guanine nucleotides by over 5-fold. Furthermore, following HGF/SF stimulation of these cells, 50% of Ras was in the GTP-bound active state. The uptake by Ras of radiolabeled GTP was also increased by 5-fold following HGF/SF stimulation in digitonin-permeabilized A549 cells. Moreover, HGF/SF treatment of A549 cells leads to stimulation of the cytosolic Ras-guanine nucleotide exchange activity, measured as accelerated release of [3H]GDP from purified recombinant Ras protein in vitro, in a dose- and time-dependent manner. Likewise, treatment with the protein-tyrosine kinase inhibitor 3-(1',4'-dihydroxytetralyl)methylene-2-oxindole of GTL-16 cells (featuring a p190MET receptor constitutively active) significantly decreased the cytosolic Ras-guanine nucleotide exchange activity. These data demonstrate that HGF/SF activates Ras protein by shifting the equilibrium toward the GTP-bound state and increases the uptake of guanine nucleotides by Ras, through mechanism(s) including the activation of a Ras-guanine nucleotide exchanger

    Theoretical and numerical studies of wave-packet propagation in tokamak plasmas

    Full text link
    Theoretical and numerical studies of wave-packet propagation are presented to analyze the time varying 2D mode structures of electrostatic fluctuations in tokamak plasmas, using general flux coordinates. Instead of solving the 2D wave equations directly, the solution of the initial value problem is used to obtain the 2D mode structure, following the propagation of wave-packets generated by a source and reconstructing the time varying field. As application, the 2D WKB method is applied to investigate the shaping effects (elongation and triangularity) of tokamak geometry on the lower hybrid wave propagation and absorbtion. Meanwhile, the Mode Structure Decomposition (MSD) method is used to handle the boundary conditions and simplify the 2D problem to two nested 1D problems. The MSD method is related to that discussed earlier by Zonca and Chen [Phys. Fluids B 5, 3668 (1993)], and reduces to the well-known "ballooning formalism" [J. W. Connor, R. J. Hastie, and J. B. Taylor, Phys. Rev. Lett. 40, 396 (1978)], when spatial scale separation applies. This method is used to investigate the time varying 2D electrostatic ITG mode structure with a mixed WKB-full-wave technique. The time varying field pattern is reconstructed and the time asymptotic structure of the wave-packet propagation gives the 2D eigenmode and the corresponding eigenvalue. As a general approach to investigate 2D mode structures in tokamak plasmas, our method also applies for electromagnetic waves with general source/sink terms, either by an internal/external antenna or nonlinear wave interaction with zonal structures.Comment: 24 pages, 14 figure

    Technical Development of a New Semispherical Radiofrequency Bipolar Device (RONJA): Ex Vivo and In Vivo Studies

    Get PDF
    The aim of this study is to inform about the development of a new semispherical surgical instrument for the bipolar multielectrode radiofrequency liver ablation. Present tools are universal; however they have several disadvantages such as ablation of healthy tissue, numerous needle punctures, and, therefore, longer operating procedure. Our newly designed and tested semispherical surgical tool can solve some of these disadvantages. By conducting an in vivo study on a set of 12 pigs, randomly divided into two groups, we have compared efficiency of the newly developed instrument with the commonly used device. Statistical analysis showed that there were no significant differences between the groups. On average, the tested instrument RONJA had shorter ablation time in both liver lobes and reduced the total operating time. The depth of the thermal alteration was on average 4 mm larger using the newly tested instrument. The new radiofrequency method described in this study could be used in open liver surgery for the treatment of small liver malignancies (up to 2 cm) in a single application with the aim of saving healthy liver parenchyma. Further experimental studies are needed to confirm these results before clinical application of the method in the treatment of human liver malignancies

    An extended hybrid magnetohydrodynamics gyrokinetic model for numerical simulation of shear Alfv\'en waves in burning plasmas

    Full text link
    Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an eXtended version of Hybrid Magnetohydrodynamics Gyrokinetic Code (XHMGC) to study thermal ion kinetic effects on Alfv\'enic modes driven by energetic particles, such as kinetic beta induced Alfv\'en eigenmodes in tokamak fusion plasmas

    Advanced modelling of the Planck-LFI radiometers

    Get PDF
    The Low Frequency Instrument (LFI) is a radiometer array covering the 30-70 GHz spectral range on-board the ESA Planck satellite, launched on May 14th, 2009 to observe the cosmic microwave background (CMB) with unprecedented precision. In this paper we describe the development and validation of a software model of the LFI pseudo-correlation receivers which enables to reproduce and predict all the main system parameters of interest as measured at each of the 44 LFI detectors. These include system total gain, noise temperature, band-pass response, non-linear response. The LFI Advanced RF Model (LARFM) has been constructed by using commercial software tools and data of each radiometer component as measured at single unit level. The LARFM has been successfully used to reproduce the LFI behavior observed during the LFI ground-test campaign. The model is an essential element in the database of LFI data processing center and will be available for any detailed study of radiometer behaviour during the survey.Comment: 21 pages, 15 figures, this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins
    corecore