52 research outputs found

    Multifaceted SlyD from Helicobacter pylori: implication in [NiFe] hydrogenase maturation

    Get PDF
    SlyD belongs to the FK506-binding protein (FKBP) family with both peptidylprolyl isomerase (PPIase) and chaperone activities, and is considered to be a ubiquitous cytosolic protein-folding facilitator in bacteria. It possesses a histidine- and cysteine-rich C-terminus binding to selected divalent metal ions (e.g., Ni2+, Zn2+), which is important for its involvement in the maturation processes of metalloenzymes. We have determined the solution structure of C-terminus-truncated SlyD from Helicobacter pylori (HpSlyDΔC). HpSlyDΔC folds into two well-separated, orientation-independent domains: the PPIase-active FKBP domain and the chaperone-active insert-in-flap (IF) domain. The FKBP domain consists of a four-stranded antiparallel β-sheet with an α-helix on one side, whereas the IF domain folds into a four-stranded antiparallel β-sheet accompanied by a short α-helix. Intact H. pylori SlyD binds both Ni2+ and Zn2+, with dissociation constants of 2.74 and 3.79 μM respectively. Intriguingly, binding of Ni2+ instead of Zn2+ induces protein conformational changes around the active sites of the FKBP domain, implicating a regulatory role of nickel. The twin-arginine translocation (Tat) signal peptide from the small subunit of [NiFe] hydrogenase (HydA) binds the protein at the IF domain. Nickel binding and the recognition of the Tat signal peptide by the protein suggest that SlyD participates in [NiFe] hydrogenase maturation processes

    Advanced analyses of kinetic stabilities of iggs modified by mutations and glycosylation

    No full text
    The stability of Immunoglobulin G (IgG) affects production, storage and usability, especially in the clinic. The complex thermal and isothermal transitions of IgGs, especially their irreversibilities, pose a challenge to the proper determination of parameters describing their thermodynamic and kinetic stability. Here, we present a reliable mathematical model to study the irreversible thermal denaturations of antibody variants. The model was applied to two unrelated IgGs and their variants with stabilizing mutations as well as corresponding non-glycosylated forms of IgGs and Fab fragments. Thermal denaturations of IgGs were analyzed with three transitions, one reversible transition corresponding to C(H)2 domain unfolding followed by two consecutive irreversible transitions corresponding to Fab and C(H)3 domains, respectively. The parameters obtained allowed us to examine the effects of these mutations on the stabilities of individual domains within the full-length IgG. We found that the kinetic stability of the individual Fab fragment is significantly lowered within the IgG context, possibly because of intramolecular aggregation upon heating, while the stabilizing mutations have an especially beneficial effect. Thermal denaturations of non-glycosylated variants of IgG consist of more than three transitions and could not be analyzed by our model. However, isothermal denaturations demonstrated that the lack of glycosylation affects the stability of all and not just of the C(H)2 domain, suggesting that the partially unfolded domains may interact with each other during unfolding. Investigating thermal denaturation of IgGs according to our model provides a valuable tool for detecting subtle changes in thermodynamic and/or kinetic stabilities of individual domains

    The path to 1Tb/s and beyond datacenter interconnect networks:Technologies, components, and subsystems

    No full text
    Modern IoT and 5G applications are driving the growth of Internet traffic and impose stringent requirements to datacenter operators for keeping pace with the increasing bandwidth and low-latency demands. At the same time, datacenters suffer from increasing number of interconnections dictating the deployment of novel architectures and high-radix switches. The ratification of 400 GbE standard is driving the market of optical transceivers nevertheless, a technology upgrade will be soon necessary to meet the tremendous traffic growth. In this paper, we present the development of 800 Gb/s and 1Tb/s optical transceivers migrating to 100 Gbaud per lane and employing wafer-scale bonding of InP membranes and InP-DHBT electronics as well as advanced co-packaging schemes. The InP membrane platform is also exploited for the development of novel ultra-fast optical space switches based on a modular architecture design for scaling to large number of I/O ports.</p
    corecore