70 research outputs found

    Decoherence in a quantum harmonic oscillator monitored by a Bose-Einstein condensate

    Full text link
    We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein condensate (BEC) trapped in a symmetric double well potential. It is demonstrated that the oscillator may experience various degrees of decoherence depending on the variable being measured and the state in which the BEC is prepared. These range from a `coherent' regime in which only the variances of the oscillator position and momentum are affected by measurement, to a slow (power law) or rapid (Gaussian) decoherence of the mean values themselves.Comment: 4 pages, 3 figures, lette

    Stochastic exclusion processes versus coherent transport

    Get PDF
    Stochastic exclusion processes play an integral role in the physics of non-equilibrium statistical mechanics. These models are Markovian processes, described by a classical master equation. In this paper a quantum mechanical version of a stochastic hopping process in one dimension is formulated in terms of a quantum master equation. This allows the investigation of coherent and stochastic evolution in the same formal framework. The focus lies on the non-equilibrium steady state. Two stochastic model systems are considered, the totally asymmetric exclusion process and the fully symmetric exclusion process. The steady state transport properties of these models is compared to the case with additional coherent evolution, generated by the XXXX-Hamiltonian

    Entanglement as a signature of quantum chaos

    Get PDF
    We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter κ\kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both bipartite and pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as κ\kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over initial states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.Comment: 8 pages, 8 figure

    Many-body symbolic dynamics of a classical oscillator chain

    Full text link
    We study a certain type of the celebrated Fermi-Pasta-Ulam particle chain, namely the inverted FPU model, where the inter-particle potential has a form of a quartic double well. Numerical evidence is given in support of a simple symbolic description of dynamics (in the regime of sufficiently high potential barrier between the wells) in terms of an (approximate) Markov process. The corresponding transition matrix is formally identical to a ferromagnetic Heisenberg quantum spin-1/2 chain with long range coupling, whose diagonalization yields accurate estimates for a class of time correlation functions of the model.Comment: 22 pages in LaTeX with 14 figures; submitted to Nonlinearity ; corrected page offset proble

    Stability of quantum motion and correlation decay

    Full text link
    We derive a simple and general relation between the fidelity of quantum motion, characterizing the stability of quantum dynamics with respect to arbitrary static perturbation of the unitary evolution propagator, and the integrated time auto-correlation function of the generator of perturbation. Surprisingly, this relation predicts the slower decay of fidelity the faster decay of correlations is. In particular, for non-ergodic and non-mixing dynamics, where asymptotic decay of correlations is absent, a qualitatively different and faster decay of fidelity is predicted on a time scale 1/delta as opposed to mixing dynamics where the fidelity is found to decay exponentially on a time-scale 1/delta^2, where delta is a strength of perturbation. A detailed discussion of a semi-classical regime of small effective values of Planck constant is given where classical correlation functions can be used to predict quantum fidelity decay. Note that the correct and intuitively expected classical stability behavior is recovered in the classical limit hbar->0, as the two limits delta->0 and hbar->0 do not commute. In addition we also discuss non-trivial dependence on the number of degrees of freedom. All the theoretical results are clearly demonstrated numerically on a celebrated example of a quantized kicked top.Comment: 32 pages, 10 EPS figures and 2 color PS figures. Higher resolution color figures can be obtained from authors; minor changes, to appear in J.Phys.A (March 2002

    Quantum state transfer in a XX chain with impurities

    Get PDF
    One spin excitation states are involved in the transmission of quantum states and entanglement through a quantum spin chain, the localization properties of these states are crucial to achieve the transfer of information from one extreme of the chain to the other. We investigate the bipartite entanglement and localization of the one excitation states in a quantum XXXX chain with one impurity. The bipartite entanglement is obtained using the Concurrence and the localization is analyzed using the inverse participation ratio. Changing the strength of the exchange coupling of the impurity allows us to control the number of localized or extended states. The analysis of the inverse participation ratio allows us to identify scenarios where the transmission of quantum states or entanglement can be achieved with a high degree of fidelity. In particular we identify a regime where the transmission of quantum states between the extremes of the chain is executed in a short transmission time N/2\sim N/2, where NN is the number of spins in the chain, and with a large fidelity

    Entangled random pure states with orthogonal symmetry: exact results

    Full text link
    We compute analytically the density ϱN,M(λ)\varrho_{N,M}(\lambda) of Schmidt eigenvalues, distributed according to a fixed-trace Wishart-Laguerre measure, and the average R\'enyi entropy Sq\langle\mathcal{S}_q\rangle for reduced density matrices of entangled random pure states with orthogonal symmetry (β=1)(\beta=1). The results are valid for arbitrary dimensions N=2k,MN=2k,M of the corresponding Hilbert space partitions, and are in excellent agreement with numerical simulations.Comment: 15 pages, 5 figure

    Linear dynamical entropy and free-independence for quantized maps on the torus

    Full text link
    We study the relations between the averaged linear entropy production in periodically measured quantum systems and ergodic properties of their classical counterparts. Quantized linear automorphisms of the torus, both classically chaotic and regular ones, are used as examples. Numerical calculations show different entropy production regimes depending on the relation between the Kolmogorov-Sinai entropy and the measurement entropy. The hypothesis of free independence relations between the dynamics and measurement proposed to explain the initial constant and maximal entropy production is tested numerically for those models.Comment: 7 pages, 5 figure

    Entanglement and localization of wavefunctions

    Full text link
    We review recent works that relate entanglement of random vectors to their localization properties. In particular, the linear entropy is related by a simple expression to the inverse participation ratio, while next orders of the entropy of entanglement contain information about e.g. the multifractal exponents. Numerical simulations show that these results can account for the entanglement present in wavefunctions of physical systems.Comment: 6 pages, 4 figures, to appear in the proceedings of the NATO Advanced Research Workshop 'Recent Advances in Nonlinear Dynamics and Complex System Physics', Tashkent, Uzbekistan, 200

    Slow dynamics in translation-invariant quantum lattice models

    Get PDF
    Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations
    corecore