research

Entangled random pure states with orthogonal symmetry: exact results

Abstract

We compute analytically the density ϱN,M(λ)\varrho_{N,M}(\lambda) of Schmidt eigenvalues, distributed according to a fixed-trace Wishart-Laguerre measure, and the average R\'enyi entropy Sq\langle\mathcal{S}_q\rangle for reduced density matrices of entangled random pure states with orthogonal symmetry (β=1)(\beta=1). The results are valid for arbitrary dimensions N=2k,MN=2k,M of the corresponding Hilbert space partitions, and are in excellent agreement with numerical simulations.Comment: 15 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions