We review recent works that relate entanglement of random vectors to their
localization properties. In particular, the linear entropy is related by a
simple expression to the inverse participation ratio, while next orders of the
entropy of entanglement contain information about e.g. the multifractal
exponents. Numerical simulations show that these results can account for the
entanglement present in wavefunctions of physical systems.Comment: 6 pages, 4 figures, to appear in the proceedings of the NATO Advanced
Research Workshop 'Recent Advances in Nonlinear Dynamics and Complex System
Physics', Tashkent, Uzbekistan, 200