147 research outputs found

    Security challenges of small cell as a service in virtualized mobile edge computing environments

    Get PDF
    Research on next-generation 5G wireless networks is currently attracting a lot of attention in both academia and industry. While 5G development and standardization activities are still at their early stage, it is widely acknowledged that 5G systems are going to extensively rely on dense small cell deployments, which would exploit infrastructure and network functions virtualization (NFV), and push the network intelligence towards network edges by embracing the concept of mobile edge computing (MEC). As security will be a fundamental enabling factor of small cell as a service (SCaaS) in 5G networks, we present the most prominent threats and vulnerabilities against a broad range of targets. As far as the related work is concerned, to the best of our knowledge, this paper is the first to investigate security challenges at the intersection of SCaaS, NFV, and MEC. It is also the first paper that proposes a set of criteria to facilitate a clear and effective taxonomy of security challenges of main elements of 5G networks. Our analysis can serve as a staring point towards the development of appropriate 5G security solutions. These will have crucial effect on legal and regulatory frameworks as well as on decisions of businesses, governments, and end-users

    Developing a comprehensive information security framework for mHealth: a detailed analysis

    Get PDF
    It has been clearly shown that mHealth solutions, which is the use of mobile devices and other wireless technology to provide healthcare services, deliver more patient-focused healthcare, and improve the overall efficiency of healthcare systems. In addition, these solutions can potentially reduce the cost of providing healthcare in the context of the increasing demands of the aging populations in advanced economies. These solutions can also play an important part in intelligent environments, facilitating real-time data collection and input to enable various functionalities. However, there are several challenges regarding the development of mHealth solutions: the most important of these being privacy and data security. Furthermore, the use of cloud computing is becoming an option for the healthcare sector to store healthcare data; but storing data in the cloud raises serious concerns. This paper investigates how data are managed both on mHealth devices as well as in the cloud. Firstly, a detailed analysis of the entire mHealth domain is undertaken to determine domain-specific features and a taxonomy for mHealth, from which a set of security requirements are identified in order to develop a new information security framework. It then examines individual information security frameworks for mHealth devices and the cloud, noting similarities and differences. Furthermore, key mechanisms to implement the new framework are discussed and the new framework is then presented. Finally, the paper presents how the new framework could be implemented in order to develop an Advanced Digital Medical Platform

    Cloud computing in industrial SMEs: Identification of the barriers to its adoption and effects of its application

    Get PDF
    ABSTRACT: Cloud computing is a new technological paradigm that may revolutionize how organizations use IT by facilitating delivery of all technology as a service. In the literature, the Cloud is treated mainly through a technological approach focused on the concept definition, service models, infrastructures for its evelopment and security problems. However, there is an important lack of works which analyze this paradigm adoption in SMEs and its results, with a gap between the technological development and its adoption by organizations. This paper uses a qualitative technique methodology -group meetings with managers- and a quantitative one-survey- and identifies which factors act as barriers to Cloud adoption and which positive effects its application generates in 94 industrial SMEs. The conclusion is that the main barriers are of a cultural type and that the positive effects go well beyond reducing costs

    Social Internet of Things and New Generation Computing -- A Survey

    Full text link
    Social Internet of Things (SIoT) tries to overcome the challenges of Internet of Things (IoT) such as scalability, trust and discovery of resources, by inspiration from social computing. This survey aims to investigate the research done on SIoT from two perspectives including application domain and the integration to the new computing models. For this, a two-dimensional framework is proposed and the projects are investigated, accordingly. The first dimension considers and classifies available research from the application domain perspective and the second dimension performs the same from the integration to new computing models standpoint. The aim is to technically describe SIoT, to classify related research, to foster the dissemination of state-of-the-art, and to discuss open research directions in this field.Comment: IoT, Social computing, Surve

    Fog computing security: a review of current applications and security solutions

    Get PDF
    Fog computing is a new paradigm that extends the Cloud platform model by providing computing resources on the edges of a network. It can be described as a cloud-like platform having similar data, computation, storage and application services, but is fundamentally different in that it is decentralized. In addition, Fog systems are capable of processing large amounts of data locally, operate on-premise, are fully portable, and can be installed on heterogeneous hardware. These features make the Fog platform highly suitable for time and location-sensitive applications. For example, Internet of Things (IoT) devices are required to quickly process a large amount of data. This wide range of functionality driven applications intensifies many security issues regarding data, virtualization, segregation, network, malware and monitoring. This paper surveys existing literature on Fog computing applications to identify common security gaps. Similar technologies like Edge computing, Cloudlets and Micro-data centres have also been included to provide a holistic review process. The majority of Fog applications are motivated by the desire for functionality and end-user requirements, while the security aspects are often ignored or considered as an afterthought. This paper also determines the impact of those security issues and possible solutions, providing future security-relevant directions to those responsible for designing, developing, and maintaining Fog systems

    Infrared target and background radiometric measurements--concepts units and techniques

    Full text link
    This report discusses concepts units and techniques for making and describing measurements of radiation from targets and backgrounds.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32197/1/0000256.pd

    Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.)

    Get PDF
    Hyperplasia and hypertrophy are the two mechanisms by which muscle develops and grows. We study these two mechanisms, during the early development of white muscle in Sparus aurata, by means of histology and the expression of structural and regulatory genes. A clear stage of stratified hyperplasia was identified early in the development of gilthead sea bream but ceased by 35 dph when hypertrophy took over. Mosaic recruitment of new white fibers began as soon as 60 dph. The genes mlc2a and mlc2b were expressed at various levels during the main phases of hyperplasia and hypertrophy. The genes myog and mlc2a were significantly up-regulated during the intensive stratified formation of new fibers and their expression was significantly correlated. Expression of mstn1 and igf1 increased at 35 dph, appeared to regulate the hyperplasia-to-hypertrophy transition, and may have stimulated the expression of mlc2a, mlc2b and col1a1 at the onset of mosaic hyperplasia. The up-regulation of mstn1 at transitional phases in muscle development indicates a dual regulatory role of myostatin in fish larval muscle growth

    Human GLI3 Intragenic Conserved Non-Coding Sequences Are Tissue-Specific Enhancers

    Get PDF
    The zinc-finger transcription factor GLI3 is a key regulator of development, acting as a primary transducer of Sonic hedgehog (SHH) signaling in a combinatorial context dependent fashion controlling multiple patterning steps in different tissues/organs. A tight temporal and spatial control of gene expression is indispensable, however, cis-acting sequence elements regulating GLI3 expression have not yet been reported. We show that 11 ancient genomic DNA signatures, conserved from the pufferfish Takifugu (Fugu) rubripes to man, are distributed throughout the introns of human GLI3. They map within larger conserved non-coding elements (CNEs) that are found in the tetrapod lineage. Full length CNEs transiently transfected into human cell cultures acted as cell type specific enhancers of gene transcription. The regulatory potential of these elements is conserved and was exploited to direct tissue specific expression of a reporter gene in zebrafish embryos. Assays of deletion constructs revealed that the human-Fugu conserved sequences within the GLI3 intronic CNEs were essential but not sufficient for full-scale transcriptional activation. The enhancer activity of the CNEs is determined by a combinatorial effect of a core sequence conserved between human and teleosts (Fugu) and flanking tetrapod-specific sequences, suggesting that successive clustering of sequences with regulatory potential around an ancient, highly conserved nucleus might be a possible mechanism for the evolution of cis-acting regulatory elements
    corecore