72 research outputs found

    Study of wound healing dynamics by single pseudo-particle tracking in phase contrast images acquired in time-lapse

    Get PDF
    Cellular contacts modify the way cells migrate in a cohesive group with respect to a free single cell. The resulting motion is persistent and correlated, with cells’ velocities self-aligning in time. The presence of a dense agglomerate of cells makes the application of single particle tracking techniques to define cells dynamics difficult, especially in the case of phase contrast images. Here, we propose an original pipeline for the analysis of phase contrast images of the wound healing scratch assay acquired in time-lapse, with the aim of extracting single particle trajectories describing the dynamics of the wound closure. In such an approach, the membrane of the cells at the border of the wound is taken as a unicum, i.e., the wound edge, and the dynamics is described by the stochastic motion of an ensemble of points on such a membrane, i.e., pseudo-particles. For each single frame, the pipeline of analysis includes: first, a texture classification for separating the background from the cells and for identifying the wound edge; second, the computation of the coordinates of the ensemble of pseudo-particles, chosen to be uniformly distributed along the length of the wound edge. We show the results of this method applied to a glioma cell line (T98G) performing a wound healing scratch assay without external stimuli. We discuss the efficiency of the method to assess cell motility and possible applications to other experimental layouts, such as single cell motion. The pipeline is developed in the Python language and is available upon request

    Study of Wound Healing Dynamics by Single Pseudo-Particle Tracking in Phase Contrast Images Acquired in Time-Lapse

    Get PDF
    Cellular contacts modify the way cells migrate in a cohesive group with respect to a free single cell. The resulting motion is persistent and correlated, with cells’ velocities self-aligning in time. The presence of a dense agglomerate of cells makes the application of single particle tracking techniques to define cells dynamics difficult, especially in the case of phase contrast images. Here, we propose an original pipeline for the analysis of phase contrast images of the wound healing scratch assay acquired in time-lapse, with the aim of extracting single particle trajectories describing the dynamics of the wound closure. In such an approach, the membrane of the cells at the border of the wound is taken as a unicum, i.e., the wound edge, and the dynamics is described by the stochastic motion of an ensemble of points on such a membrane, i.e., pseudo-particles. For each single frame, the pipeline of analysis includes: first, a texture classification for separating the background from the cells and for identifying the wound edge; second, the computation of the coordinates of the ensemble of pseudo-particles, chosen to be uniformly distributed along the length of the wound edge. We show the results of this method applied to a glioma cell line (T98G) performing a wound healing scratch assay without external stimuli. We discuss the efficiency of the method to assess cell motility and possible applications to other experimental layouts, such as single cell motion. The pipeline is developed in the Python language and is available upon request.Basque Government BERC 2018– 2021 Spanish Ministry of Economy and Competitiveness MINECO via the BCAM Severo Ochoa SEV-2017-0718 accreditatio

    Network approaches to Genome-Wide Association studies

    Get PDF
    In the framework of large-scale genotypic studies (describing the distribution of allele frequencies inside human genome) we characterize the Linkage Disequilibrium (LD) matrix as a network of relationships between alleles. We propose a suitable matrix discretization threshold, after a characterization of the distribution of noisy values inside LD matrix. We compare the main network parameters of a real LD matrix with two null models (Erdos-Renyi random network and a rewiring of the original network), in order to highlight the peculiar features of the LD network. We conclude stating the need of adequate computing tools for handling the high-dimensional data coming from Genome-Wide genotyping datasets

    Large-scale modelling of neuronal systems

    Get PDF
    The brain is, without any doubt, the most complex system of the human body. Its complexity is also due to the extremely high number of neurons, as well as the huge number of synapses connecting them. Each neuron is capable to perform complex tasks, like learning and memorizing a large class of patterns. The simulation of large neuronal systems is challenging for both technological and computational reasons, and can open new perspectives for the comprehension of brain functioning. A well-known and widely accepted model of bidirectional synaptic plasticity, the BCM model, is stated by a differential equation approach based on bistability and selectivity properties. We have modified the BCM model extending it from a single-neuron to a whole-network model. This new model is capable to generate interesting network topologies starting from a small number of local parameters, describing the interaction between incoming and outgoing links from each neuron. We have characterized this model in terms of complex network theory, showing how this learning rule can be a support for network generation

    Use of Schizosaccharomyces strains for wine fermentation? Effect on the wine composition and food safety

    Get PDF
    Schizosaccharomyceswas initially considered as a spoilage yeast because of the production of undesirable metabolites such as acetic acid, hydrogen sulfide, or acetaldehyde, but it currently seems to be of great value in enology.o ced Nevertheless, Schizosaccharomyces can reduce all of the malic acid in must, leading to malolactic fermentation. Malolactic fermentation is a highly complicated process in enology and leads to a higher concentration of biogenic amines, so the use of Schizosaccharomyces pombe can be an excellent tool for assuring wine safety. Schizosaccharomyces also has much more potential than only reducing the malic acid content, such as increasing the level of pyruvic acid and thus the vinylphenolic pyranoanthocyanin content. Until now, few commercial strains have been available and little research on the selection of appropriate yeast strains with such potential has been conducted. In this study, selected and wild Sc. pombe strains were used along with a Saccharomyces cerevisiae strain to ferment red grape must. The results showed significant differences in several parameters including non-volatile and volatile compounds, anthocyanins, biogenic amines and sensory parameters

    Selected Schizosaccharomyces pombe Strains Have Characteristics That Are Beneficial for Winemaking

    Get PDF
    At present, wine is generally produced using Saccharomyces yeast followed by Oenococus bacteria to complete malolactic fermentation. This method has some unsolved problems, such as the management of highly acidic musts and the production of potentially toxic products including biogenic amines and ethyl carbamate. Here we explore the potential of the fission yeast Schizosaccharomyces pombe to solve these problems. We characterise an extensive worldwide collection of S. pombe strains according to classic biochemical parameters of oenological interest. We identify three genetically different S. pombe strains that appear suitable for winemaking. These strains compare favourably to standard Saccharomyces cerevisiae winemaking strains, in that they perform effective malic acid deacidification and significantly reduce levels of biogenic amines and ethyl carbamate precursors without the need for any secondary bacterial malolactic fermentation. These findings indicate that the use of certain S. pombe strains could be advantageous for winemaking in regions where malic acid is problematic, and these strains also show superior performance with respect to food safety

    Ethanol seeking triggered by environmental context is attenuated by blocking dopamine D1 receptors in the nucleus accumbens core and shell in rats

    Get PDF
    Conditioned behavioral responses to discrete drug-associated cues can be modulated by the environmental context in which those cues are experienced, a process that may facilitate relapse in humans. Rodent models of drug self-administration have been adapted to reveal the capacity of contexts to trigger drug seeking, thereby enabling neurobiological investigations of this effect. We tested the hypothesis that dopamine transmission in the nucleus accumbens, a neural structure that mediates reinforcement, is necessary for context-induced reinstatement of responding for ethanol-associated cues. Rats pressed one lever (active) for oral ethanol (0.1 ml; 10% v/v) in operant conditioning chambers distinguished by specific visual, olfactory, and tactile contextual stimuli. Ethanol delivery was paired with a discrete (4 s) light-noise stimulus. Responses on a second lever (inactive) were not reinforced. Behavior was then extinguished by withholding ethanol but not the discrete stimulus in a different context. Reinstatement, expressed as elevated responding for the discrete stimulus without ethanol delivery, was tested by placing rats into the prior self-administration context after administration of saline or the dopamine D1 receptor antagonist, SCH 23390 (0.006, 0.06, and 0.6 Όg/side), into the nucleus accumbens core or shell. Compared with extinction responding, active lever pressing in saline-pretreated rats was enhanced by placement into the prior ethanol self-administration context. SCH 23390 dose-dependently reduced reinstatement after infusion into the core or shell. These findings suggest a critical role for dopamine acting via D1 receptors in the nucleus accumbens in the reinstatement of responding for ethanol cues triggered by placement into an ethanol-associated context

    Alcohol-Related Context Modulates Performance of Social Drinkers in a Visual Go/No-Go Task: A Preliminary Assessment of Event-Related Potentials

    Get PDF
    Background Increased alcohol cue-reactivity and altered inhibitory processing have been reported in heavy social drinkers and alcohol-dependent patients, and are associated with relapse. In social drinkers, these two processes have been usually studied separately by recording event-related potentials (ERPs) during rapid picture presentation. The aim of our study was to confront social drinkers to a task triggering high alcohol cue-reactivity, to verify whether it specifically altered inhibitory performance, by using long-lasting background picture presentation. Methods ERP were recorded during visual Go/No-Go tasks performed by social drinkers, in which a frequent Go signal (letter “M”), and a rare No-Go signal (letter “W”) were superimposed on three different types of background pictures: neutral (black background), alcohol-related and non alcohol-related. Results Our data suggested that heavy social drinkers made more commission errors than light drinkers, but only in the alcohol-related context. Neurophysiologically, this was reflected by a delayed No-Go P3 component. Conclusions Elevated alcohol cue-reactivity may lead to poorer inhibitory performance in heavy social drinkers, and may be considered as an important vulnerability factor in developing alcohol misuse. Prevention programs should be designed to decrease the high arousal of alcohol stimuli and strengthen cognitive control in young, at-risk individuals.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • 

    corecore