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Summary. — The brain is, without any doubt, the most complex system of the
human body. Its complexity is also due to the extremely high number of neurons,
as well as the huge number of synapses connecting them. Each neuron is capable
to perform complex tasks, like learning and memorizing a large class of patterns.
The simulation of large neuronal systems is challenging for both technological and
computational reasons, and can open new perspectives for the comprehension of
brain functioning. A well-known and widely accepted model of bidirectional synap-
tic plasticity, the BCM model, is stated by a differential equation approach based
on bistability and selectivity properties. We have modified the BCM model extend-
ing it from a single-neuron to a whole-network model. This new model is capable
to generate interesting network topologies starting from a small number of local
parameters, describing the interaction between incoming and outgoing links from
each neuron. We have characterized this model in terms of complex network theory,
showing how this learning rule can be a support for network generation.

PACS 87.18.Vf – Systems biology.
PACS 87.18.Sn – Neural networks and synaptic communication.
PACS 87.75.Hc – Networks and genealogical trees.

1. – Description

We start from the Bienenstock, Cooper and Munro (BCM) nonlinear model for the
synaptic plasticity of single neuron synapses (fig. 1), which represents each incoming
synapse with a [0; 1] real number, and expresses the time evolution of each incoming
synapse as a function of the neuron output, the values of the synapses and previous
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c© Società Italiana di Fisica 13

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Open-access Literature Archive and Repository

https://core.ac.uk/display/294762572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


14 G. CASTELLANI, E. VERONDINI, E. GIAMPIERI, ETC.

Fig. 1. – Scheme of a synaptic junction. Left side (pre-synaptic) is the axon end, right side
(post-synaptic) is the dendrite.

Fig. 2. – The moving threshold, as stated by the BCM theory.

neuron firing history. This formulation determines a high level of selectivity of the neuron,
which at the end of the training becomes responsive to only one of the incoming stimuli.
We were searching for a simple model describing a neural network evolution based on
the BCM model, which obtained great experimental confirmation for the primary visual
cortex development. We simplified BCM equations (generalizing them in some way) and
added to the model few parameters modulating the competition between each group of
links (e.g. incoming and outgoing). These groups emerge intuitively in the transition
between the single neuron and the network model. The classical network evolution
models [1], Barabasi-Alberts preferential attachment rule [2], and the Watts-Strogatz
rewiring model [3], were discarded because we were looking for a continuous model which
could determine the dynamics of each link with only local information available.

Bienenstock, Cooper and Munro proposed [4] for the first time a model for synaptic
plasticity which could generate long-term depotentiation (LTD) without external impo-
sitions. This model was developed as a heuristic model for explaining the experimental
data of the sensorial-cortex neurons selectivity to the inputs. It is based on the Hebbian
model, replacing the Φ constant with a Φ(y, θM ), nonlinear function of y and θM , a pa-
rameter that regulates the plasticity direction: LTD if y < θM and long-term potentiation
LTP if y > θM .

The Φ(y, θM ) function shape is displayed in fig. 2. The competition is incorporated in
the equation defining θM as a function of the squared mean of the output [4]. This forces
the selection threshold to adapt to the output levels as time goes by. The synapses with
an activation level below the neuron activation will be depotentiated, while the synapses
with a stronger activation value will be potentiated, leaving only the latter in the end.
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The system is described by the equations below:
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in which E[ ] represents a time average and, for large averaging periods, corresponds to
an average over the input distribution. From a statistical point of view, these equations
perform a minimization of the following objective function [5]:
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which quantifies the difference from a Gaussian (symmetric) distribution. The BCM
selection rule is therefore equivalent to the input combination which maximizes the non-
Gaussian form of the output.

This discriminating behavior for input signals has some interesting properties, first
of all the linearity of the objective function gradient with respect to the dimensionality
of the problem, keeping it tractable even in high-dimensional spaces. The selectivity
also allows a research of the projections of the synaptic weight vector orthogonal to
the whole input vectors except one, creating a state completely described by K optimal
projections, instead of 1

2K(K−1) planes which describe the boundaries between clusters.
This property is cardinal when the problem dimensionality is high, because it avoids the
curse of dimensionality, which requires an exponentially growing amount of data with
the dimension increase for sufficient statistics [6].

We worked on a set of equations similar to the original BCM model [7], expanding
it into a multi-neuronal system under the hypothesis of a slow variation of the synaptic
weight, so to substitute the time-average with the instantaneous value of each link.
Calling xij the weight of the synapses starting from neuron i to neuron j, we considered
the following general equation:

(2) ẋij = xij
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in which aijkl is a fourth-order tensor which describes the interaction of each pair of
synapses. A positive value of aijkl corresponds to a competition between link xij and
xkl, a negative value to a cooperation. The simplest case is the so-called homogeneous
competition, with a constant tensor aijkl = a∀i, j, k, l. This case is useful for mathe-
matical analysis but is too simplicistic, so we considered local interaction between links
subdividing them into equivalence classes of competition. Imposing a local interaction
(only synapses belonging to the same neurons could interact) we subdivided the tensor
into four main classes of interaction: ingoing links, outgoing links, hierarchical links and
reciprocal. The ingoing links are those links that enter into the same neuron, and were
the only ones considered in the BCM model. The outgoing links are those that exit from
the same neuron, and the competition among them is due to the energy cost of the main-
tenance of a lot of synapses. The hierarchical competition is a different selection rule
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that forces the neuron to sacrifice the incoming or the outgoing connection, specializing
into an input or output neuron. The last one, the reciprocal competition, controls the
reciprocal connections between neurons.
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2. – Analysis

Generic model analysis. – First we started with the analysis of the model of N nodes
with symmetrical and homogeneous competition. The evolution equation can be treated
analytically when there are only two nodes: when the modulating parameter A goes
below a critical value, the competition is weak enough to allow both links to survive,
and we observe a phase transition even in this simple bidimensional system. Then we
extended these results to the n-dimensional system, showing that the system always has
a Lyapunov function if the interaction between nodes is symmetrical, and the system
shows an exponential convergence to a stable state with at maximum A − 1 alive links,
distributed approximately with a Poisson function. This interaction topology can be
interpreted as a mean-field interaction.

Network topological proximity . – We restricted the concept of mean field from the
whole network to a subset of links, chosen from the topological proximity of each link
with respect to their starting and ending nodes. We define a competition group consisting
of all links incoming to the same node, one for all outgoing links and another, called
hierarchical competition, comprising the incoming and outgoing links of the same node.
So we have now three different parameters independent from the system dimensionality.
These values are positive when two links are in reciprocal competition, and negative
when they are collaborating. This model analysis is far over the pen and paper system
possibility, so we worked on a wide number of simulations. When the system is composed
of N nodes and N(N−1) links, the ideal algorithmic convergence of this model is O(N2),
but with some simple numerical approximation we can work at O(NB) with B a real
number in the interval [1; 2] with strong parameter and initial condition dependencies.

Bow-tie structure. – A strong hierarchical competition forces a node to choose between
incoming and outgoing links. Loosening this condition we can allow the node to stabilize
in a intermediate status, with few incoming and outgoing links. The global structure
is similar to the hypothesized properties of a human-made network, the World Wide
Web [8], which is divided into three groups: the exit pages, with only outgoing links, the
entering pages, with only incoming links, and an intermediate, strongly interconnected
group with both incoming and outgoing links (see fig. 3).

Metabolic pathways structure. – This network represents the interaction of various
proteins involved in metabolic functions of the cell. Each protein has a really specific
interaction target, so we can impose that only one, two only in few cases, outgoing links
are allowed for each protein (typical outgoing competition parameter of 0.3). We can
see in fig. 4 that the resulting network has the same features as a metabolic network. A
better approximation is possible by introducing a small collaboration between incoming
links (co-regulation is a very common feature, so we can hypothesize to be present in
this case).
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Fig. 3. – Network with a bow-tie structure, resembling the World Wide Web topology.

Fig. 4. – Network structure resembling a metabolic pathway.

3. – Conclusions

Network generation and evolution is still an unsolved problem, and there is not evi-
dence that a final word would be ever possible about. The model here proposed shows
how a dynamic approach to the problem is possible and, from few reasonable hypotheses
(the concept of local competition and collaboration) it is possible to describe a lot of
different phenomenological structures (network topologies). The concept of competition
is widespread in a lot of different models, from biology to economy, due to the intrinsic
minimization of a cost functional, and such behavior is surely common to any system
with limited resources.
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