10 research outputs found

    2019 Technical Report: a Review of Age Verification Mechanism for 10 Social Media Apps

    Get PDF
    This technical report analyzes the 10 most used apps among children aged 8-12: Snapchat, Instagram, Tiktok, Viber, Skype, Facebook, HouseParty, Discord, Messenger, WhatsApp. For each application we assess whether the terms of use specify a minimum age that is compliant with the GDPR and whether the specified age is the same across all EU countries. We also verify whether each app provides mechanisms to verify the age of the user and how easy is to circumvent the verification mechanisms. The remainder of this report discusses the results of our study providing evidence to support the answers provided for each question

    Digital Age of Consent and Age Verification: Can They Protect Children?

    Get PDF
    Children are increasingly accessing social media content through mobile devices. Existing data protection regulations have focused on defining the digital age of consent, in order to limit collection of children’s personal data by organizations. However, children can easily bypass the mechanisms adopted by apps to verify their age, and thereby be exposed to privacy and safety threats. We conducted a study to identify how the top 10 social and communication apps among underage users apply age limits in their Terms of Use. We also assess the robustness of the mechanisms these apps put in place to verify the age of their users. Moreover, we discuss how automated age recognition techniques can be adopted to increase the effectiveness of the age verification process. Finally, we provide recommendations to app providers and developers to specify the Terms of Use and implement robust age verification mechanisms

    Progesterone Receptor induces bcl-x expression through intragenic binding sites favoring RNA Polymerase II elongation

    Get PDF
    Steroid receptors were classically described for regulating transcription by binding to target gene promoters. However, genome-wide studies reveal that steroid receptors-binding sites are mainly located at intragenic regions. To determine the role of these sites, we examined the effect of pro- gestins on the transcription of the bcl-x gene, where only intragenic progesterone receptor-binding sites (PRbs) were identified. We found that in response to hormone treatment, the PR is recruited to these sites along with two histone acetyltransferases CREB-binding protein (CBP) and GCN5, leading to an increase in histone H3 and H4 acetylation and to the binding of the SWI/SNF complex. Concomitant, a more relaxed chromatin was detected along bcl-x gene mainly in the regions sur- rounding the intragenic PRbs. PR also mediated the recruitment of the positive elongation factor pTEFb, favoring RNA polymerase II (Pol II) elongation activity. Together these events promoted the re-dis- tribution of the active Pol II toward the 30-end of the gene and a decrease in the ratio between proximal and distal transcription. These results suggest a novel mechanism by which PR regulates gene ex- pression by facilitating the proper passage of the polymerase along hormone-dependent genes.Fil: Bertucci, Paola Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Nacht, Ana Silvina. Universitat Pompeu Fabra; España. Centro de Regulación Genómica; EspañaFil: Alló, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Rocha Viegas, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Ballaré, Cecilia. Universitat Pompeu Fabra; España. Centro de Regulación Genómica; EspañaFil: Soronellas, Daniel. Centro de Regulación Genómica; España. Universitat Pompeu Fabra; EspañaFil: Castellano, Giancarlo. Centro de Regulación Genómica; España. Universitat Pompeu Fabra; EspañaFil: Zaurin, Roser. Centro de Regulación Genómica; España. Universitat Pompeu Fabra; EspañaFil: Kornblihtt, Alberto Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Beato, Miguel. Centro de Regulación Genómica; España. Universitat Pompeu Fabra; EspañaFil: Vicent, Guillermo. Centro de Regulación Genómica; España. Universitat Pompeu Fabra; EspañaFil: Pecci, Adali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    A Review of Age Verification Mechanism for 10 Social Media Apps

    No full text
    In this study we analyze the 10 most used apps among children aged 8-12: Snapchat, Instagram, Tiktok, Viber, Skype, Facebook, HouseParty, Discord, Messenger, WhatsApp. For each application we assess whether the terms of use specify a minimum age that is compliant with the GDPR and whether the specified age is the same across all EU countries. We also verify whether each app provides mechanisms to verify the age of the user and how easy is to circumvent the verification mechanisms. The remainder of this report discusses the results of our study providing evidence to support the answers provided for each question.European Commission Horizon 2020Science Foundation IrelandCyberSafe Irelan

    SETD5 haploinsufficiency affects mitochondrial compartment in neural cells

    No full text
    Abstract Background Neurodevelopmental disorders (NDDs) are heterogeneous conditions due to alterations of a variety of molecular mechanisms and cell dysfunctions. SETD5 haploinsufficiency leads to NDDs due to chromatin defects. Epigenetic basis of NDDs has been reported in an increasing number of cases while mitochondrial dysfunctions are more common within NDD patients than in the general population. Methods We investigated in vitro neural stem cells as well as the brain of the Setd5 haploinsufficiency mouse model interrogating its transcriptome, analyzing mitochondrial structure, biochemical composition, and dynamics, as well as mitochondrial functionality. Results Mitochondrial impairment is facilitated by transcriptional aberrations originated by the decrease of the SETD5 enzyme. Low levels of SETD5 resulted in fragmented mitochondria, reduced mitochondrial membrane potential, and ATP production both in neural precursors and neurons. Mitochondria were also mislocalized in mutant neurons, with reduced organelles within neurites and synapses. Limitations We found several defects in the mitochondrial compartment; however, we can only speculate about their position in the hierarchy of the pathological mechanisms at the basis of the disease. Conclusions Our study explores the interplay between chromatin regulation and mitochondria functions as a possible important aspect of SETD5-associated NDD pathophysiology. Our data, if confirmed in patient context, suggest that the mitochondrial activity and dynamics may represent new therapeutic targets for disorders associated with the loss of SETD5

    PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells

    Get PDF
    Objective: Cancer stem cells are responsible for tumour spreading and relapse. Human epidermal growth factor receptor 2 (HER2) expression is a negative prognostic factor in colorectal cancer (CRC) and a potential target in tumours carrying the gene amplification. Our aim was to define the expression of HER2 in colorectal cancer stem cells (CR-CSCs) and its possible role as therapeutic target in CRC resistant to anti- epidermal growth factor receptor (EGFR) therapy. Design: A collection of primary sphere cell cultures obtained from 60 CRC specimens was used to generate CR-CSC mouse avatars to preclinically validate therapeutic options. We also made use of the ChIP-seq analysis for transcriptional evaluation of HER2 activation and global RNA-seq to identify the mechanisms underlying therapy resistance. Results: Here we show that in CD44v6-positive CR-CSCs, high HER2 expression levels are associated with an activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which promotes the acetylation at the regulatory elements of the Erbb2 gene. HER2 targeting in combination with phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase kinase (MEK) inhibitors induces CR-CSC death and regression of tumour xenografts, including those carrying Kras and Pik3ca mutation. Requirement for the triple targeting is due to the presence of cancer-associated fibroblasts, which release cytokines able to confer CR-CSC resistance to PI3K/AKT inhibitors. In contrast, targeting of PI3K/AKT as monotherapy is sufficient to kill liver-disseminating CR-CSCs in a model of adjuvant therapy. Conclusions: While PI3K targeting kills liver-colonising CR-CSCs, the concomitant inhibition of PI3K, HER2 and MEK is required to induce regression of tumours resistant to anti-EGFR therapies. These data may provide a rationale for designing clinical trials in the adjuvant and metastatic setting

    Empagliflozin in Patients with Chronic Kidney Disease

    No full text
    Background The effects of empagliflozin in patients with chronic kidney disease who are at risk for disease progression are not well understood. The EMPA-KIDNEY trial was designed to assess the effects of treatment with empagliflozin in a broad range of such patients. Methods We enrolled patients with chronic kidney disease who had an estimated glomerular filtration rate (eGFR) of at least 20 but less than 45 ml per minute per 1.73 m(2) of body-surface area, or who had an eGFR of at least 45 but less than 90 ml per minute per 1.73 m(2) with a urinary albumin-to-creatinine ratio (with albumin measured in milligrams and creatinine measured in grams) of at least 200. Patients were randomly assigned to receive empagliflozin (10 mg once daily) or matching placebo. The primary outcome was a composite of progression of kidney disease (defined as end-stage kidney disease, a sustained decrease in eGFR to < 10 ml per minute per 1.73 m(2), a sustained decrease in eGFR of & GE;40% from baseline, or death from renal causes) or death from cardiovascular causes. Results A total of 6609 patients underwent randomization. During a median of 2.0 years of follow-up, progression of kidney disease or death from cardiovascular causes occurred in 432 of 3304 patients (13.1%) in the empagliflozin group and in 558 of 3305 patients (16.9%) in the placebo group (hazard ratio, 0.72; 95% confidence interval [CI], 0.64 to 0.82; P < 0.001). Results were consistent among patients with or without diabetes and across subgroups defined according to eGFR ranges. The rate of hospitalization from any cause was lower in the empagliflozin group than in the placebo group (hazard ratio, 0.86; 95% CI, 0.78 to 0.95; P=0.003), but there were no significant between-group differences with respect to the composite outcome of hospitalization for heart failure or death from cardiovascular causes (which occurred in 4.0% in the empagliflozin group and 4.6% in the placebo group) or death from any cause (in 4.5% and 5.1%, respectively). The rates of serious adverse events were similar in the two groups. Conclusions Among a wide range of patients with chronic kidney disease who were at risk for disease progression, empagliflozin therapy led to a lower risk of progression of kidney disease or death from cardiovascular causes than placebo
    corecore