132 research outputs found

    Assessing the risk of central post-stroke pain of thalamic origin by lesion mapping

    Get PDF
    Central post-stroke pain of thalamic origin is an extremely distressing and often refractory disorder. There are no well-established predictors for pain development after thalamic stroke, and the role of different thalamic nuclei is unclear. Here, we used structural magnetic resonance imaging to identify the thalamic nuclei, specifically implicated in the generation of central post-stroke pain of thalamic origin. Lesions of 10 patients with central post-stroke pain of thalamic origin and 10 control patients with thalamic strokes without pain were identified as volumes of interest on magnetic resonance imaging data. Non-linear deformations were estimated to match each image with a high-resolution template and were applied to each volume of interest. By using a digital atlas of the thalamus, we elucidated the involvement of different nuclei with respect to each lesion. Patient and control volumes of interest were summed separately to identify unique areas of involvement. Voxelwise odds ratio maps were calculated to localize the anatomical site where lesions put patients at risk of developing central post-stroke pain of thalamic origin. In the patients with pain, mainly lateral and posterior thalamic nuclei were affected, whereas a more anterior-medial lesion pattern was evident in the controls. The lesions of 9 of 10 pain patients overlapped at the border of the ventral posterior nucleus and the pulvinar, coinciding with the ventrocaudalis portae nucleus. The lesions of this area showed an odds ratio of 81 in favour of developing thalamic pain. The high odds ratio at the ventral posterior nucleus-pulvinar border zone indicates that this area is crucial in the pathogenesis of thalamic pain and demonstrates the feasibility of identifying patients at risk of developing central post-stroke pain of thalamic origin early after thalamic insults. This provides a basis for pre-emptive treatment studie

    How Low Can You Go?: Widespread Challenges in Measuring Low Stream Discharge and a Path Forward

    Get PDF
    Low flows pose unique challenges for accurately quantifying streamflow. Current field methods are not optimized to measure these conditions, which in turn, limits research and management. In this essay, we argue that the lack of methods for measuring low streamflow is a fundamental challenge that must be addressed to ensure sustainable water management now and into the future, particularly as climate change shifts more streams to increasingly frequent low flows. We demonstrate the pervasive challenge of measuring low flows, present a decision support tool (DST) for navigating best practices in measuring low flows, and highlight important method developmental needs

    An Improved Canine Genome and a Comprehensive Catalogue of Coding Genes and Non-Coding Transcripts

    Get PDF
    The domestic dog, Canis familiaris, is a well-established model system for mapping trait and disease loci. While the original draft sequence was of good quality, gaps were abundant particularly in promoter regions of the genome, negatively impacting the annotation and study of candidate genes. Here, we present an improved genome build, canFam3.1, which includes 85 MB of novel sequence and now covers 99.8% of the euchromatic portion of the genome. We also present multiple RNA-Sequencing data sets from 10 different canine tissues to catalog ∼175,000 expressed loci. While about 90% of the coding genes previously annotated by EnsEMBL have measurable expression in at least one sample, the number of transcript isoforms detected by our data expands the EnsEMBL annotations by a factor of four. Syntenic comparison with the human genome revealed an additional ∼3,000 loci that are characterized as protein coding in human and were also expressed in the dog, suggesting that those were previously not annotated in the EnsEMBL canine gene set. In addition to ∼20,700 high-confidence protein coding loci, we found ∼4,600 antisense transcripts overlapping exons of protein coding genes, ∼7,200 intergenic multi-exon transcripts without coding potential, likely candidates for long intergenic non-coding RNAs (lincRNAs) and ∼11,000 transcripts were reported by two different library construction methods but did not fit any of the above categories. Of the lincRNAs, about 6,000 have no annotated orthologs in human or mouse. Functional analysis of two novel transcripts with shRNA in a mouse kidney cell line altered cell morphology and motility. All in all, we provide a much-improved annotation of the canine genome and suggest regulatory functions for several of the novel non-coding transcripts

    Opioid receptors in GtoPdb v.2023.1

    Get PDF
    Opioid and opioid-like receptors are activated by a variety of endogenous peptides including [Met]enkephalin (met), [Leu]enkephalin (leu), β-endorphin (β-end), α-neodynorphin, dynorphin A (dynA), dynorphin B (dynB), big dynorphin (Big dyn), nociceptin/orphanin FQ (N/OFQ); endomorphin-1 and endomorphin-2 are also potential endogenous peptides. The Greek letter nomenclature for the opioid receptors, μ, δ and κ, is well established, and NC-IUPHAR considers this nomenclature appropriate, along with the symbols spelled out (mu, delta, and kappa), and the acronyms, MOP, DOP, and KOP [124, 101, 92]. However the acronyms MOR, DOR and KOR are still widely used in the literature. The human N/OFQ receptor, NOP, is considered 'opioid-related' rather than opioid because, while it exhibits a high degree of structural homology with the conventional opioid receptors [304], it displays a distinct pharmacology. Currently there are numerous clinically used drugs, such as morphine and many other opioid analgesics, as well as antagonists such as naloxone. The majority of clinically used opiates are relatively selective μ agonists or partial agonists, though there are some μ/κ compounds, such as butorphanol, in clinical use. κ opioid agonists, such as the alkaloid nalfurafine and the peripherally acting peptide difelikefalin, are in clinical use for itch

    Opioid receptors in GtoPdb v.2021.3

    Get PDF
    Opioid and opioid-like receptors are activated by a variety of endogenous peptides including [Met]enkephalin (met), [Leu]enkephalin (leu), β-endorphin (β-end), α-neodynorphin, dynorphin A (dynA), dynorphin B (dynB), big dynorphin (Big dyn), nociceptin/orphanin FQ (N/OFQ); endomorphin-1 and endomorphin-2 are also potential endogenous peptides. The Greek letter nomenclature for the opioid receptors, μ, δ and κ, is well established, and NC-IUPHAR considers this nomenclature appropriate, along with the symbols spelled out (mu, delta, and kappa), and the acronyms, MOP, DOP, and KOP. [121, 100, 91]. The human N/OFQ receptor, NOP, is considered 'opioid-related' rather than opioid because, while it exhibits a high degree of structural homology with the conventional opioid receptors [294], it displays a distinct pharmacology. Currently there are numerous clinically used drugs, such as morphine and many other opioid analgesics, as well as antagonists such as naloxone, however only for the μ receptor

    Validation of an open source, remote web‐based eye‐tracking method (WebGazer) for research in early childhood

    Get PDF
    Measuring eye movements remotely via the participant's webcam promises to be an attractive methodological addition to in-person eye-tracking in the lab. However, there is a lack of systematic research comparing remote web-based eye-tracking with in-lab eye-tracking in young children. We report a multi-lab study that compared these two measures in an anticipatory looking task with toddlers using WebGazer.js and jsPsych. Results of our remotely tested sample of 18-27-month-old toddlers (N = 125) revealed that web-based eye-tracking successfully captured goal-based action predictions, although the proportion of the goal-directed anticipatory looking was lower compared to the in-lab sample (N = 70). As expected, attrition rate was substantially higher in the web-based (42%) than the in-lab sample (10%). Excluding trials based on visual inspection of the match of time-locked gaze coordinates and the participant's webcam video overlayed on the stimuli was an important preprocessing step to reduce noise in the data. We discuss the use of this remote web-based method in comparison with other current methodological innovations. Our study demonstrates that remote web-based eye-tracking can be a useful tool for testing toddlers, facilitating recruitment of larger and more diverse samples; a caveat to consider is the larger drop-out rate

    Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia.

    Get PDF
    BACKGROUND: Genetic mutations underlying familial Alzheimer\u27s disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (App RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aβ content. The App DISCUSSION: Our findings demonstrate that fibrillar Aβ in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology

    Proteomic Analysis of Pathways Involved in Estrogen-Induced Growth and Apoptosis of Breast Cancer Cells

    Get PDF
    Estrogen is a known growth promoter for estrogen receptor (ER)-positive breast cancer cells. Paradoxically, in breast cancer cells that have been chronically deprived of estrogen stimulation, re-introduction of the hormone can induce apoptosis.Here, we sought to identify signaling networks that are triggered by estradiol (E2) in isogenic MCF-7 breast cancer cells that undergo apoptosis (MCF-7:5C) versus cells that proliferate upon exposure to E2 (MCF-7). The nuclear receptor co-activator AIB1 (Amplified in Breast Cancer-1) is known to be rate-limiting for E2-induced cell survival responses in MCF-7 cells and was found here to also be required for the induction of apoptosis by E2 in the MCF-7:5C cells. Proteins that interact with AIB1 as well as complexes that contain tyrosine phosphorylated proteins were isolated by immunoprecipitation and identified by mass spectrometry (MS) at baseline and after a brief exposure to E2 for two hours. Bioinformatic network analyses of the identified protein interactions were then used to analyze E2 signaling pathways that trigger apoptosis versus survival. Comparison of MS data with a computationally-predicted AIB1 interaction network showed that 26 proteins identified in this study are within this network, and are involved in signal transduction, transcription, cell cycle regulation and protein degradation.G-protein-coupled receptors, PI3 kinase, Wnt and Notch signaling pathways were most strongly associated with E2-induced proliferation or apoptosis and are integrated here into a global AIB1 signaling network that controls qualitatively distinct responses to estrogen
    corecore