3 research outputs found

    Constraints on the interacting holographic dark energy model

    Full text link
    We examined the interacting holographic dark energy model in a universe with spatial curvature. Using the near-flatness condition and requiring that the universe is experiencing an accelerated expansion, we have constrained the parameter space of the model and found that the model can accommodate a transition of the dark energy from ωD>1\omega_D>-1 to ωD<1\omega_D<-1.Comment: 9 pages, 6 figure

    Transition of the dark energy equation of state in an interacting holographic dark energy model

    Full text link
    A model of holographic dark energy with an interaction with matter fields has been investigated. Choosing the future event horizon as an IR cutoff, we have shown that the ratio of energy densities can vary with time. With the interaction between the two different constituents of the universe, we observed the evolution of the universe, from early deceleration to late time acceleration. In addition, we have found that such an interacting dark energy model can accommodate a transition of the dark energy from a normal state where wD>1w_D>-1 to wD<1w_D<-1 phantom regimes. Implications of interacting dark energy model for the observation of dark energy transition has been discussed.Comment: revised version, references added. Accepted for publication in PL

    Super-acceleration on the Brane by Energy Flow from the Bulk

    Full text link
    We consider a brane cosmological model with energy exchange between brane and bulk. Parameterizing the energy exchange term by the scale factor and Hubble parameter, we are able to exactly solve the modified Friedmann equation on the brane. In this model, the equation of state for the effective dark energy has a transition behavior changing from wdeeff>1w_{de}^{eff}>-1 to wdeeff<1w_{de}^{eff}<-1, while the equation of state for the dark energy on the brane has w>1w>-1. Fitting data from type Ia supernova, Sloan Digital Sky Survey and Wilkinson Microwave Anisotropy Probe, our universe is predicted now in the state of super-acceleration with wde0eff=1.21w_{de0}^{eff}=-1.21.Comment: Revtex, 11 pages including 2 figures,v2: tpos fixed, references added, to appear in JCA
    corecore