933 research outputs found
How often should we monitor for reliable detection of atrial fibrillation recurrence? Efficiency considerations and implications for study design
OBJECTIVE: Although atrial fibrillation (AF) recurrence is unpredictable in terms of onset and duration, current intermittent rhythm monitoring (IRM) diagnostic modalities are short-termed and discontinuous. The aim of the present study was to investigate the necessary IRM frequency required to reliably detect recurrence of various AF recurrence patterns. METHODS: The rhythm histories of 647 patients (mean AF burden: 12±22% of monitored time; 687 patient-years) with implantable continuous monitoring devices were reconstructed and analyzed. With the use of computationally intensive simulation, we evaluated the necessary IRM frequency to reliably detect AF recurrence of various AF phenotypes using IRM of various durations. RESULTS: The IRM frequency required for reliable AF detection depends on the amount and temporal aggregation of the AF recurrence (p<0.0001) as well as the duration of the IRM (p<0.001). Reliable detection (>95% sensitivity) of AF recurrence required higher IRM frequencies (>12 24-hour; >6 7-day; >4 14-day; >3 30-day IRM per year; p<0.0001) than currently recommended. Lower IRM frequencies will under-detect AF recurrence and introduce significant bias in the evaluation of therapeutic interventions. More frequent but of shorter duration, IRMs (24-hour) are significantly more time effective (sensitivity per monitored time) than a fewer number of longer IRM durations (p<0.0001). CONCLUSIONS: Reliable AF recurrence detection requires higher IRM frequencies than currently recommended. Current IRM frequency recommendations will fail to diagnose a significant proportion of patients. Shorter duration but more frequent IRM strategies are significantly more efficient than longer IRM durations. CLINICAL TRIAL REGISTRATION URL: Unique identifier: NCT00806689
Reward-Based Crowdfunding Research and Practice
publishedVersio
Effectiveness of strategies to increase the validity of findings from association studies: size vs. replication
<p>Abstract</p> <p>Background</p> <p>The capacity of multiple comparisons to produce false positive findings in genetic association studies is abundantly clear. To address this issue, the concept of false positive report probability (FPRP) measures "the probability of no true association between a genetic variant and disease given a statistically significant finding". This concept involves the notion of prior probability of an association between a genetic variant and a disease, making it difficult to achieve acceptable levels for the FPRP when the prior probability is low. Increasing the sample size is of limited efficiency to improve the situation.</p> <p>Methods</p> <p>To further clarify this problem, the concept of true report probability (TRP) is introduced by analogy to the positive predictive value (PPV) of diagnostic testing. The approach is extended to consider the effects of replication studies. The formula for the TRP after k replication studies is mathematically derived and shown to be only dependent on prior probability, alpha, power, and number of replication studies.</p> <p>Results</p> <p>Case-control association studies are used to illustrate the TRP concept for replication strategies. Based on power considerations, a relationship is derived between TRP after k replication studies and sample size of each individual study. That relationship enables study designers optimization of study plans. Further, it is demonstrated that replication is efficient in increasing the TRP even in the case of low prior probability of an association and without requiring very large sample sizes for each individual study.</p> <p>Conclusions</p> <p>True report probability is a comprehensive and straightforward concept for assessing the validity of positive statistical testing results in association studies. By its extension to replication strategies it can be demonstrated in a transparent manner that replication is highly effective in distinguishing spurious from true associations. Based on the generalized TRP method for replication designs, optimal research strategy and sample size planning become possible.</p
Cost-effectiveness of an insertable cardiac monitor in a high-risk population in the UK
Objective To evaluate the cost-effectiveness of insertable cardiac monitors (ICMs) compared with standard of care (SoC) for detecting atrial fibrillation (AF) in patients at high risk of stroke (CHADS 2 >2), using a UK National Health Service (NHS) perspective. Methods Using patient characteristics and clinical data from the REVEAL AF trial, a Markov model assessed the cost-effectiveness of detecting AF with an ICM compared with SoC. Costs and benefits were extrapolated across modelled patient lifetime. Ischaemic and haemorrhagic strokes, intracranial and extracranial haemorrhages and minor bleeds were modelled. Diagnostic and device costs were included, plus costs of treating stroke and bleeding events and costs of oral anticoagulants (OACs). Costs and health outcomes, measured as quality-adjusted life years (QALYs), were discounted at 3.5% per annum. One-way deterministic and probabilistic sensitivity analyses (PSA) were undertaken. Results The total per-patient cost for ICM was £13 360 versus £11 936 for SoC (namely, annual 24 hours Holter monitoring). ICMs generated a total of 6.50 QALYs versus 6.30 for SoC. The incremental cost-effectiveness ratio (ICER) was £7140/QALY gained, below the £20 000/QALY acceptability threshold. ICMs were cost-effective in 77.4% of PSA simulations. The number of ICMs needed to prevent one stroke was 21 and to cause a major bleed was 37. ICERs were sensitive to assumed proportions of patients initiating or discontinuing OAC after AF diagnosis, type of OAC used and how intense the traditional monitoring was assumed to be under SoC. Conclusions The use of ICMs to identify AF in a high-risk population is cost-effective for the UK NHS
Circulating CD14brightCD16+ 'intermediate' monocytes exhibit enhanced parasite pattern recognition in human helminth infection.
Circulating monocyte sub-sets have recently emerged as mediators of divergent immune functions during infectious disease but their role in helminth infection has not been investigated. In this study we evaluated whether 'classical' (CD14brightCD16-), 'intermediate' (CD14brightCD16+), and 'non-classical' (CD14dimCD16+) monocyte sub-sets from peripheral blood mononuclear cells varied in both abundance and ability to bind antigenic material amongst individuals living in a region of Northern Senegal which is co-endemic for Schistosoma mansoni and S. haematobium. Monocyte recognition of excretory/secretory (E/S) products released by skin-invasive cercariae, or eggs, of S. mansoni was assessed by flow cytometry and compared between S. mansoni mono-infected, S. mansoni and S. haematobium co-infected, and uninfected participants. Each of the three monocyte sub-sets in the different infection groups bound schistosome E/S material. However, 'intermediate' CD14brightCD16+ monocytes had a significantly enhanced ability to bind cercarial and egg E/S. Moreover, this elevation of ligand binding was particularly evident in co-infected participants. This is the first demonstration of modulated parasite pattern recognition in CD14brightCD16+ intermediate monocytes during helminth infection, which may have functional consequences for the ability of infected individuals to respond immunologically to infection
Relationship between Plasmodium falciparum malaria prevalence, genetic diversity and endemic Burkitt lymphoma in Malawi
Endemic Burkitt lymphoma (eBL) has been linked to Plasmodium falciparum (Pf) malaria infection, but the contribution of infection with multiple Pf genotypes is uncertain. We studied 303 eBL (cases) and 274 non eBL-related cancers (controls) in Malawi using a sensitive and specific molecular-barcode array of 24 independently segregating Pf single nucleotide polymorphisms. Cases had a higher Pf malaria prevalence than controls (64.7% versus 45.3%; odds ratio [OR] 2.1, 95% confidence interval (CI): 1.5 to 3.1). Cases and controls were similar in terms of Pf density (4.9 versus 4.5 log copies, p = 0.28) and having ≥3 non-clonal calls (OR 2.7, 95% CI: 0.7-9.9, P = 0.14). However, cases were more likely to have a higher Pf genetic diversity score (153.9 versus 133.1, p = 0.036), which measures a combination of clonal and non-clonal calls, than controls. Further work is needed to evaluate the possible role of Pf genetic diversity in the pathogenesis of endemic BL
Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi
We report the detection of high-energy gamma-ray emission from two starburst
galaxies using data obtained with the Large Area Telescope on board the Fermi
Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been
detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from
sources positionally coincident with locations of the starburst galaxies M82
and NGC 253. The total fluxes of the sources are consistent with gamma-ray
emission originating from the interaction of cosmic rays with local
interstellar gas and radiation fields and constitute evidence for a link
between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter
Fermi Gamma-ray Imaging of a Radio Galaxy
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating
from the giant radio lobes of the radio galaxy Centaurus A. The resolved
gamma-ray image shows the lobes clearly separated from the central active
source. In contrast to all other active galaxies detected so far in high-energy
gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the
total source emission. The gamma-ray emission from the lobes is interpreted as
inverse Compton scattered relic radiation from the cosmic microwave background
(CMB), with additional contribution at higher energies from the
infrared-to-optical extragalactic background light (EBL). These measurements
provide gamma-ray constraints on the magnetic field and particle energy content
in radio galaxy lobes, and a promising method to probe the cosmic relic photon
fields.Comment: 27 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar
Fermi Large Area Telescope observations of PSR J1836+5925
The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly
unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments
of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic
plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8
million years, a spindown luminosity of 1.1 erg s, and a
large off-peak emission component, making it quite unusual among the known
gamma-ray pulsar population. We present an analysis of one year of LAT data,
including an updated timing solution, detailed spectral results and a long-term
light curve showing no indication of variability. No evidence for a surrounding
pulsar wind nebula is seen and the spectral characteristics of the off-peak
emission indicate it is likely magnetospheric. Analysis of recent XMM
observations of the X-ray counterpart yields a detailed characterization of its
spectrum, which, like Geminga, is consistent with that of a neutron star
showing evidence for both magnetospheric and thermal emission.Comment: Accepted to Astrophysical Journa
How to use implantable loop recorders in clinical trials and hybrid therapy
Epidemiological studies show that atrial fibrillation (AF) is associated with a doubling of mortality, even after adjustment for confounders. AF can be asymptomatic, but this does not decrease the thromboembolic risk of the patient. Office ECGs, occasional 24-h Holter recordings and long-term ECG event recording might not be sensitive and accurate enough in patients with AF, especially in those with paroxysmal episodes. In one study, 7 days of continuous monitoring with event recorders detected paroxysmal AF in 20 of 65 patients with a previous negative 24-h Holter recording. Over the last decade, enormous improvements have been made in the technology of implantable devices, which can now store significant information regarding heart rhythm. The first subcutaneous implantable monitor (Reveal XT, Medtronic) was validated for continuous AF monitoring by the XPECT study. The dedicated AF detection algorithm uses irregularity and incoherence of R–R intervals to identify and classify patterns in ventricular conduction. Its sensitivity in identifying patients with AF is >96%. Numerous clinical data from continuous monitoring of AF have recently been published. The first applications of this technology have been in the field of surgical and catheter AF ablation. With regard to cryptogenic stroke, an international randomized trial is ongoing to compare standard care with standard care plus the implantable cardiac monitor for AF detection in patients discharged with the diagnosis of cryptogenic stroke: the Crystal AF trial. Continuous AF monitoring provides an optimal picture of daily AF burden, both symptomatic and asymptomatic. Implantable cardiac monitors have high sensitivity, enable better assessment of therapy success and may guide further AF therapy
- …