308 research outputs found

    Acute and Chronic Role of Nitric Oxide, Renin-Angiotensin System and Sympathetic Nervous System in the Modulation of Calcium Sensitization in Wistar Rats

    Get PDF
    Summary Principal vasoactive systems -renin-angiotensin system (RAS), sympathetic nervous system (SNS), nitric oxide (NO) and prostanoids -exert their vascular effects through the changes in calcium levels and/or calcium sensitization. To estimate a possible modulation of calcium sensitization by the above vasoactive systems, we studied the influence of acute and chronic blockade of particular vasoactive systems on blood pressure (BP) changes elicited in conscious normotensive rats by acute dose-dependent administration of Rho-kinase inhibitor fasudil. Adult male chronically cannulated Wistar rats were used throughout this study. The acute inhibition of NO synthase (NOS) by L-NAME enhanced BP response to fasudil, the effect being considerably augmented in rats deprived of endogenous SNS. The acute inhibition of prostanoid synthesis by indomethacin modified BP response to fasudil less than the acute NOS inhibition. The chronic NOS inhibition caused moderate BP elevation and a more pronounced augmentation of fasudilinduced BP changes compared to the effect of acute NOS inhibition. This indicates both short-term and long-term NOdependent attenuation of calcium sensitization. Long-term inhibition of RAS by captopril caused a significant attenuation of BP changes elicited by fasudil. In contrast, a long-term attenuation of SNS by chronic guanethidine treatment (in youth or adulthood) had no effect on BP response to fasudil, suggesting the absence of SNS does not affect calcium sensitization in vascular smooth muscle of normotensive rats. In conclusion, renin-angiotensin system contributes to the long-term increase of calcium sensitization and its effect is counterbalanced by nitric oxide which decreases calcium sensitization in Wistar rats

    New Exclusion Limits for the Search of Scalar and Pseudoscalar Axion-Like Particles from "Light Shining Through a Wall"

    Full text link
    Physics beyond the Standard Model predicts the possible existence of new particles that can be searched at the low energy frontier in the sub-eV range. The OSQAR photon regeneration experiment looks for "Light Shining through a Wall" from the quantum oscillation of optical photons into "Weakly Interacting Sub-eV Particles", such as axion or Axion-Like Particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2×14.32 \times 14.3 m. In 2014, this experiment has been run with an outstanding sensitivity, using an 18.5 W continuous wave laser emitting in the green at the single wavelength of 532 nm. No regenerated photons have been detected after the wall, pushing the limits for the existence of axions and ALPs down to an unprecedented level for such a type of laboratory experiment. The di-photon couplings of possible pseudo-scalar and scalar ALPs can be constrained in the nearly massless limit to be less than 3.51083.5\cdot 10^{-8} GeV1^{-1} and 3.21083.2\cdot 10^{-8} GeV1^{-1}, respectively, at 95% Confidence Level.Comment: 6 pages, 6 figure

    Search for weakly interacting sub-eV particles with the OSQAR laser-based experiment: results and perspectives

    Get PDF
    Recent theoretical and experimental studies highlight the possibility of new fundamental particle physics beyond the Standard Model that can be probed by sub-eV energy experiments. The OSQAR photon regeneration experiment looks for "Light Shining through a Wall" (LSW) from the quantum oscillation of optical photons into "Weakly Interacting Sub-eV Particles" (WISPs), like axion or axion-like particles (ALPs), in a 9 T transverse magnetic field over the unprecedented length of 2×14.32 \times 14.3 m. No excess of events has been detected over the background. The di-photon couplings of possible new light scalar and pseudo-scalar particles can be constrained in the massless limit to be less than 8.0×1088.0\times10^{-8} GeV1^{-1}. These results are very close to the most stringent laboratory constraints obtained for the coupling of ALPs to two photons. Plans for further improving the sensitivity of the OSQAR experiment are presented.Comment: 7 pages, 7 figure

    Summary of OSQAR First Achievements and Main Requests for 2008

    Get PDF
    Abstract - In the first paragraph, OSQAR foremost achievements are summarised together with a brief reminder of its scientific context. In the second paragraph, activities planned for 2008 are briefly reviewed including the expected scientific results. The third paragraph is devoted to the requests addressed to CERN as the host laboratory and as a collaboration member of the OSQAR photon regeneration experiment

    Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

    Get PDF
    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient

    Electrophysiological and arrhythmogenic effects of 5-hydroxytryptamine on human atrial cells are reduced in atrial fibrillation

    Get PDF
    5-Hydroxytryptamine (5-HT) is proarrhythmic in atrial cells from patients in sinus rhythm (SR) via activation of 5-HT<sub>4</sub> receptors, but its effects in atrial cells from patients with atrial fibrillation (AF) are unknown. The whole-cell perforated patch-clamp technique was used to record L-type Ca<sup>2+</sup> current (<i>I</i><sub>CaL</sub>), action potential duration (APD) and arrhythmic activity at 37 °C in enzymatically isolated atrial cells obtained from patients undergoing cardiac surgery, in SR or with chronic AF. In the AF group, 5-HT (10 μM) produced an increase in <i>I</i><sub>CaL</sub> of 115 ± 21% above control (<i>n</i> = 10 cells, 6 patients) that was significantly smaller than that in the SR group (232 ± 33%; <i>p</i> 0.05; <i>n</i> = 27 cells, 12 patients). Subsequent co-application of isoproterenol (1 μM) caused a further increase in <i>I</i><sub>CaL</sub> in the AF group (by 256 ± 94%) that was greater than that in the SR group (22 ± 6%; p < 0.05). The APD at 50% repolarisation (APD<sub>50</sub>) was prolonged by 14 ± 3 ms by 5-HT in the AF group (<i>n</i> = 37 cells, 14 patients). This was less than that in the SR group (27 ± 4 ms; <i>p</i> < 0.05; <i>n</i> = 58 cells, 24 patients). Arrhythmic activity in response to 5-HT was observed in 22% of cells in the SR group, but none was observed in the AF group (p < 0.05). Atrial fibrillation was associated with reduced effects of 5-HT, but not of isoproterenol, on <i>I</i><sub>CaL</sub> in human atrial cells. This reduced effect on <i>I</i><sub>CaL</sub> was associated with a reduced APD<sub>50</sub> and arrhythmic activity with 5-HT. Thus, the potentially arrhythmogenic influence of 5-HT may be suppressed in AF-remodelled human atrium

    Latest Results of the OSQAR Photon Regeneration Experiment for Axion-Like Particle Search

    Full text link
    The OSQAR photon regeneration experiment searches for pseudoscalar and scalar axion-like particles by the method of "Light Shining Through a Wall", based on the assumption that these weakly interacting sub-eV particles couple to two photons to give rise to quantum oscillations with optical photons in strong magnetic field. No excess of events has been observed, which constrains the di-photon coupling strength of both pseudoscalar and scalar particles down to 5.71085.7 \cdot 10^{-8} GeV1^{-1} in the massless limit. This result is the most stringent constraint on the di-photon coupling strength ever achieved in laboratory experiments.Comment: 6 pages, 5 figures. appears in Proceedings of the 10th PATRAS Workshop on Axions, WIMPs and WISPs (2014

    Transcription profiling of HCN-channel isotypes throughout mouse cardiac development

    Get PDF
    Hyperpolarization-activated ion channels, encoded by four mammalian genes (HCN1-4), contribute in an important way to the cardiac pacemaker current If. Here, we describe the transcription profiles of the four HCN genes, the NRSF, KCNE2 and Kir2.1 genes from embryonic stage E9.5 dpc to postnatal day 120 in the mouse. Embryonic atrium and ventricle revealed abundant HCN4 transcription but other HCN transcripts were almost absent. Towards birth, HCN4 was downregulated in the atrium and almost vanished from the ventricle. After birth, however, HCN isotype transcription changed remarkably, showing increased levels of HCN1, HCN2 and HCN4 in the atrium and of HCN2 and HCN4 in the ventricle. HCN3 showed highest transcription at early embryonic stages and was hardly detectable thereafter. At postnatal day 10, HCN4 was highest in the sinoatrial node, being twofold higher than HCN1 and fivefold higher than HCN2. In the atrium, HCN4 was similar to HCN1 and sevenfold higher than HCN2. In the ventricle, in contrast, HCN2 was sixfold higher than HCN4, while HCN1 was absent. Subsequently all HCN isotype transcripts declined to lower adult levels, while ratios of HCN isotypes remained stable. In conclusion, substantial changes of HCN isotype transcription throughout cardiac development suggest that a regulated pattern of HCN isotypes is required to establish and ensure a stable heart rhythm. Furthermore, constantly low HCN transcription in adult myocardium may be required to prevent atrial and ventricular arrhythmogenesis
    corecore