226 research outputs found

    Characteristics of multiple‐year nitrous oxide emissions from conventional vegetable fields in southeastern China

    Get PDF
    The annual and interannual characteristics of nitrous oxide (N2O) emissions from conventional vegetable fields are poorly understood. We carried out 4 year measurements of N2O fluxes from a conventional vegetable cultivation area in the Yangtze River delta. Under fertilized conditions subject to farming practices, approximately 86% of the annual total N2O release occurred following fertilization events. The direct emission factors (EFd) of the 12 individual vegetable seasons investigated ranged from 0.06 to 14.20%, with a mean of 3.09% and a coefficient of variation (CV) of 142%. The annual EFd varied from 0.59 to 4.98%, with a mean of 2.88% and an interannual CV of 74%. The mean value is much larger than the latest default value (1.00%) of the Intergovernmental Panel on Climate Change. Occasional application of lagoon‐stored manure slurry coupled with other nitrogen fertilizers, or basal nitrogen addition immediately followed by heavy rainfall, accounted for a substantial portion of the large EFds observed in warm seasons. The large CVs suggest that the emission factors obtained from short‐term observations that poorly represent seasonality and/or interannual variability will inevitably yield large uncertainties in inventory estimation. The results of this study indicate that conventional vegetable fields associated with intensive nitrogen addition, as well as occasional applications of manure slurry, may substantially account for regional N2O emissions. However, this conclusion needs to be further confirmed through studies at multiple field sites. Moreover, further experimental studies are needed to test the mitigation options suggested by this study for N2O emissions from open vegetable fields

    Hyperin up-regulates miR-7031-5P to promote osteogenic differentiation of MC3T3-E1 cells

    Get PDF
    Objective. To investigate the effects of Hyperin (Hyp) on osteogenic differentiation of MC3T3E1 cells. Methods. Differentially expressed miRNA was screened by miRNA Microarray. miR-7031-5P overexpression and knockdown MC3T3-E1 cell models were constructed by transfecting miR-7031-5P mimics and inhibitor. Alizarin red staining (ARS) assay was used to observe the formation of mineralized nodules in MC3T3-E1 cells. ALP activity was detected by using ALP detection kit. Western blot assay was used to examine the changes in osteogenic differentiation-related proteins. The relationship between miR-7031-5P and Wnt7a was revealed by dual luciferase report experiments. Results. We found that miR-7031-5P was upregulated in MC3T3-E1 cells after Hyp treatment. The results indicated that compared with the untreated group, Hyp promoted the formation of mineralized nodules and the alkaline phosphatase (ALP) activity of MC3T3-E1 cells via overexpressing miR-7031-5P. Besides, elevated miR-7031-5P increased OPN, COL1A1, and Runx2 mRNA expression. More importantly, Wnt7a was identified as the downstream target gene of miR-70315P promoting osteogenic differentiation of MC3T3-E1 cells. Conclusions. Hyp up-regulated miR-7031-5P to promote osteogenic differentiation of MC3T3-E1 cells by targeting Wnt7

    Rime length, stress, and association domains

    Full text link
    Every regular Chinese syllable has a syllable tone (the tone we get when the syllable is read in isolation). In some Chinese languages, the tonal pattern of a multisyllabic expression is basically a concatenation of the syllable tones. In other Chinese languages, the tonal pattern of a multisyllabic expression is determined solely by the initial syllable. I call the former M -languages (represented by Mandarin) and the latter S -languages (represented by Shanghai). I argue that there is an additional difference in rime structures between the two language groups. In S-languages, all rimes are simple, i.e., there are no underlying diphthongs or codas. In M-languages, all regular rimes are heavy. I further argue that a syllable keeps its underlying tones only if it has stress. Independent metrical evidence tells us that heavy rimes may carry inherent stress. Thus, in M-languages, all regular syllables are stressed and retain their underlying tones (which may or may not undergo further changes). In contrast, in S-languages, regular rimes do not carry inherent stress; instead, only those syllables that are assigned stress by rule can keep their underlying tones and hence head a multisyllabic tonal domain.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42998/1/10831_2005_Article_BF01440582.pd

    Quantitative nucleolar proteomics reveals nuclear re-organization during stress- induced senescence in mouse fibroblast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleolus is the most prominent mammalian organelle within the nucleus which is also the site for ribosomal biogenesis. There have been many reports indicating the involvement of nucleolus in the process of aging. Several proteins related to aging have been shown to localize in the nucleolus, which suggests the role of this organelle in senescence.</p> <p>Results</p> <p>In this study, we used quantitative mass spectrometry to map the flux of proteins into and out of the nucleolus during the induction of senescence in cultured mammalian cells. Changes in the abundance of 344 nucleolar proteins in sodium butyrate-induced senescence in NIH3T3 cells were studied by SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry. Biochemically, we have validated the proteomic results and confirmed that B23 (nucleophosmin) protein was down-regulated, while poly (ADP-ribose) polymerase (PARP) and nuclear DNA helicase II (NDH II/DHX9/RHA) were up-regulated in the nucleolus upon treatment with sodium butyrate. Accumulation of chromatin in the nucleolus was also observed, by both proteomics and microscopy, in sodium butyrate-treated cells. Similar observations were found in other models of senescence, namely, in mitoxantrone- (MTX) treated cells and primary fibroblasts from the Lamin A knockout mice.</p> <p>Conclusion</p> <p>Our data indicate an extensive nuclear organization during senescence and suggest that the redistribution of B23 protein and chromatin can be used as an important marker for senescence.</p

    Corrosion of current cullector materials in the molten carbonate fuel cell

    No full text
    The corrosion of current collector materials in MoltenCarbonate Fuel Cells (MCFC) is investigated. The essential aimsof this investigation were to study the corrosion behaviour ofdifferent materials, in varying cathode and anode MCFCenvironments, and to study the contact corrosion resistancesbetween the MCFC current collector and electrodes. For thesepurposes, pure iron, iron-chromium binary alloys and severalcommercial steels were investigated in molten carbonate meltswithin the pot-cell laboratory set-up. In addition, the contactcorrosion resistances, between an AISI 310 current collectorand two cathodes (NiO and LiCoO2), were studied in a laboratory fuel cell.Post-tests were done to study the corrosion products formed atthe surfaces. In cathode environments, corrosion potential increased overtime as a protective corrosion layer slowly formed. Eventually,the potential reached a stable value close to the cathodeoperating potential. The main cathode reaction, as corrosionpotential increased, changed from water reduction to oxygenreduction. Corrosion rate under the operating cathode conditiondepended on the chromium content; the higher the concentrationof chromium, the lower the corrosion rate. The corrosion ratesof ferritic steels, with high chromium content, and AISI 310were higher at the so-called outlet operating condition incomparison to the standard and so-called inlet conditions. Thecorrosion rate was higher at the beginning of the exposure,which resulted in a relatively fast corrosion layer growth thatslowed as the protective layer was formed. It was shown thatthe corrosion layers, formed on iron-chromium alloys, AISI 310and ferritic high chromium-containing steels, consisted of twolayers. The outer layer was porous and iron rich, while theinner layer was quite compact and rich in chromium and/oraluminiumTherefore, the corrosion behaviour was dependent onthe corrosion layer structure at the metal surface. In anode environments, the beneficial behaviour of aluminiumin ferritic alloys, with high aluminium contents, was due tothe formation of aluminium oxide and/or lithium aluminium oxideat the surface. The corrosion rates at the standard and outletconditions were of the same order of magnitude, while thecorrosion rates at the inlet conditions were considerablyhigher. The lower temperatures and higher carbon dioxideconcentrations in the inlet conditions appeared to result in asurface layer deficient in aluminium. A modified theoreticalmodel was developed to evaluate the corrosion current densitiesfrom experimental polarisation curves or linear polarisationresistance measurements in anode environments. The fittingswere found to be very good. An experimental method was developed forin-situmeasurements of the contributions to the totalohmic losses at the cathode in a laboratory scale MCFC. Thecontact resistance between the cathode and current collectorcontributed quite a large value to the total cathodepolarization. The corrosion layer, formed between the LiCoO2cathode and AISI 310 current collector, wasiron-rich and more porous, and contained a small amount ofcobalt. This was deemed to consist of a two-phase oxide, whichresulted in a lower conductivity. The corrosion layer, formedbetween the NiO cathode and AISI 310 current collector, wasrich in nickel. The corrosion layers on the AISI 310, incontact with the cathode, had a different composition comparedto samples immersed in carbonate melts. Key words: molten carbonate fuel cell (MCFC), corrosion,current collector, contact corrosion resistance.NR 2014080
    corecore