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Characteristics of multiple‐year nitrous oxide emissions
from conventional vegetable fields in southeastern China

Baoling Mei,1,2 Xunhua Zheng,1 Baohua Xie,1 Haibo Dong,1 Zhisheng Yao,1

Chunyan Liu,1 Zaixing Zhou,1 Rui Wang,1 Jia Deng,1 and Jianguo Zhu3

Received 15 September 2010; revised 18 March 2011; accepted 5 April 2011; published 25 June 2011.

[1] The annual and interannual characteristics of nitrous oxide (N2O) emissions from
conventional vegetable fields are poorly understood. We carried out 4 year measurements
of N2O fluxes from a conventional vegetable cultivation area in the Yangtze River
delta. Under fertilized conditions subject to farming practices, approximately 86% of
the annual total N2O release occurred following fertilization events. The direct
emission factors (EFd) of the 12 individual vegetable seasons investigated ranged from
0.06 to 14.20%, with a mean of 3.09% and a coefficient of variation (CV) of 142%.
The annual EFd varied from 0.59 to 4.98%, with a mean of 2.88% and an interannual
CV of 74%. The mean value is much larger than the latest default value (1.00%) of the
Intergovernmental Panel on Climate Change. Occasional application of lagoon‐stored
manure slurry coupled with other nitrogen fertilizers, or basal nitrogen addition
immediately followed by heavy rainfall, accounted for a substantial portion of the large
EFds observed in warm seasons. The large CVs suggest that the emission factors obtained
from short‐term observations that poorly represent seasonality and/or interannual
variability will inevitably yield large uncertainties in inventory estimation. The results of
this study indicate that conventional vegetable fields associated with intensive nitrogen
addition, as well as occasional applications of manure slurry, may substantially account
for regional N2O emissions. However, this conclusion needs to be further confirmed
through studies at multiple field sites. Moreover, further experimental studies are needed
to test the mitigation options suggested by this study for N2O emissions from open
vegetable fields.

Citation: Mei, B., X. Zheng, B. Xie, H. Dong, Z. Yao, C. Liu, Z. Zhou, R. Wang, J. Deng, and J. Zhu (2011), Characteristics of
multiple‐year nitrous oxide emissions from conventional vegetable fields in southeastern China, J. Geophys. Res., 116, D12113,
doi:10.1029/2010JD015059.

1. Introduction

[2] Nitrous oxide (N2O) is a particularly important member
of the nitrogen oxides because it is both a greenhouse gas
with a long residence time in the atmosphere and an impor-
tant source of stratospheric nitric oxide (NO), and the latter
role is essential in ozone layer chemistry. The atmospheric
concentration of N2O has been increasing at a rate of 0.2–
0.3% per year [Intergovernmental Panel on Climate Change
(IPCC), 2007]. Cultivated soils, which are major biological
sources of N2O, emit the gas mainly through microbial nitri-

fication and denitrification. Globally, approximately 2.8 Tg N
y−1 is currently released from cultivated soils as N2O [IPCC,
2007], and nitrogen (N) fertilizers are the dominant sources
of N2O emissions from cultivated soils [Mosier and Kroeze,
2000; Stehfest and Bouwman, 2006].
[3] To meet the food requirements of a rapidly increasing

world population, especially in developing nations, the use
of N fertilizers is essential. Global consumption of N ferti-
lizers increased at a rate of 6–7% yr−1 in the 1990s [Food and
Agriculture Organization (FAO), 1998], and the forecast
for world N fertilizer demand shows an increase at an annual
rate of approximately 1.4% (which is an overall increase of
7.3 million tons per year) through 2011/2012; approximately
69% of this growth will take place in Asia [FAO, 2008].
China’s large, growing population is associated with an
immense agricultural demand. As a result, the country cur-
rently consumes almost 1/3 of the world’s N fertilizers
(http://faostat.fao.org/default.aspx). Of the N fertilizer con-
sumed in China, a considerable proportion (e.g., approxi-
mately 17% in the 1990s) has been applied to vegetable
farms [Zheng et al., 2004]. Vegetable production in China
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has increased rapidly over the past two decades. By the early
2000s, for instance, the vegetable cultivation area had
increased to approximately 19% of the total crop cultivation
area of China from representing less than 10% in the 1980s
[FAO, 2004]. Furthermore, vegetable farms are usually
treated with greater amounts of N fertilizers than fields
cultivated with grain crops. Nitrogen application rates for
individual vegetable growing seasons are usually 300 to
700 kg N ha−1 [e.g., Li and Wang, 2007] and even more in
some cases [e.g., Ju et al., 2004; He et al., 2009], but the rate
is only 150 to 300 kg N ha−1 for nonvegetable crops [e.g.,
Ju et al., 2009]. The increased use of N fertilizers has
stimulated and will most likely continue to stimulate inten-
sive N2O emissions from vegetable fields. Therefore, the
development of mitigation strategies for controlling N2O
emissions while sustaining vegetable yields is urgent. Under-
standing the characteristics and quantifying the magnitude of
N2O emissions from vegetable fields will provide a scientific
basis for developing mitigation options.
[4] There have been a number of field studies on N2O

emissions from vegetable fields all over the world [Smith
et al., 1998; van der Weerden et al., 2000; Ruser et al.,
2001; Cheng et al., 2002; Gattinger et al., 2002; Flessa
et al., 2002; Kusa et al., 2002; Hou and Tsuruta, 2003;
Yang et al., 2005; Burger et al., 2005; Xiong et al., 2006;
Cao et al., 2006a, 2006b; Hosono et al., 2006; Vallejo et al.,
2006; Toma et al., 2007; He et al., 2007, 2009; Vermeulen
and Mosquera, 2009; Pang et al., 2009; Lin et al., 2010].
However, only a few of these studies were based on mul-
tiyear field measurements, and approximately half of the
previous studies with year‐round measurements were car-
ried out in vegetable fields within greenhouses [Xiong et al.,
2006; Hosono et al., 2006; He et al., 2007, 2009]. The study
with the longest field measurements (6 years) on this topic
was conducted at a study site with gray lowland soil in
Hokkaido, Japan. In this previous study, only onion was
cultivated, and observations of N2O emissions were con-
ducted only during the growing seasons [Kusa et al., 2002].
However, measurements made exclusively in growing sea-
sons may underestimate total annual emissions, as strong
N2O emissions may sometimes occur during fallow periods.
We found eight reports in the literature on N2O emissions
related to vegetable cultivation in China. Of these Chinese
studies, three were based on measurements conducted in
the fields within greenhouses [Xiong et al., 2006; He et al.,
2007, 2009]; one employed outdoor potting experiments
[Yang et al., 2005]; and four were conducted using obser-
vations made in open vegetable fields [Cao et al., 2006a,
2006b; Pang et al., 2009; Lin et al., 2010]. Out of the four
reports on N2O emissions from open vegetable fields, the
field measurements of three studies were conducted over
short periods of three to seven months [Cao et al., 2006a,
2006b; Pang et al., 2009], and only one study was con-
ducted over a long period of four years [Lin et al., 2010].
The N2O fluxes measured within periods much shorter than
one year may poorly represent the annual emissions. In the
single multiyear measurement study, observations of gas
fluxes were monthly conducted [Lin et al., 2010]. Such a
low frequency of observations may not represent high
temporal variability. Especially explosive N2O pulses may
be missed. As a result, enormous uncertainty may be yielded
for emission factors, which are key parameters for inventory

compilation [IPCC, 2006]. Additionally, vegetable growing
conditions are quite different between greenhouses and open
fields. Thus, emissions measured inside greenhouses may
differ considerably from those of open fields. Moreover,
N2O emissions from vegetable fields are regulated not only
by the dose of N fertilizers applied but also by environmental
conditions, such as soil temperature. For instance, 2 year
observations conducted in a tomato field inside a greenhouse
in Shandong province showed that 0.27–0.30% of fertilizer
N was lost through N2O emissions [He et al., 2009], but
Cao et al. [2006b] observed much higher loss rates of 2.62–
4.92% in open vegetable fields in Nanjing, China. Many
factors, such as the time of observations, soil properties, and
management practices, may have accounted for the tremen-
dous difference in the results of these two studies, and these
are factors that were poorly addressed by the authors.
[5] To better understand the large temporal and/or spatial

variability observed in N2O emissions from vegetable fields
and its essential driving forces, intensive year‐round and
multiyear measurements under open conditions with con-
ventional management practices are required. To meet these
requirements, we launched a study using 4 year simulta-
neous measurements of N2O and NO emissions from open
vegetable fields in the Yangtze River delta under the local
conventional management regime. Our NO emission results
were reported in a separate recent publication [Mei et al.,
2009]. In this report, we will pay more attention to the
results of N2O emissions. Furthermore, the NO emissions
reported by Mei et al. [2009] and N2O emissions reported
here will be synthetically compared and discussed.

2. Materials and Methods

2.1. Experimental Site and Field Treatments

[6] We conducted experiments in the Yangtze River delta
from 1 September 2004 through 5 October 2008. Before we
began our experiments, the soil had been conventionally
cultivated with upland vegetables for approximately 20 years.
Prior to vegetable cultivation, the soil was a paddy (specifi-
cally, a Shajiang Hapli‐Stagnic Anthrosol) cultivated with
annual rice‐wheat or rice‐rapeseed rotation systems. In the
present study, two fertilization treatments (with and without
addition of N fertilizer) were applied, and three replicate field
plots were randomly set for each treatment. The details of the
experimental sites, soil properties, field management prac-
tices, meteorological conditions (daily precipitation and daily
mean air temperature) and soil conditions (daily soil moisture
in water‐filled pore space and daily soil temperature) for the
entire experimental period were described in our recent
publication on NO emissions [Mei et al., 2009]. Our expe-
riments spanned four full‐year periods and included thirteen
vegetable growing seasons and a short fallow period, which
were denoted as P1 through P14 in Table 1. The exact time
spans for these periods are provided in the footnotes of this
table. For the fertilization treatments both with and without N
addition, we performed our experiments in a field managed
by a local farmer following the conventional cultivation
practices in the region. All management practices of both
field treatments during our investigation period were carried
out by the local farmer, such as choosing the vegetable spe-
cies, fertilization schedules and doses, and watering sche-
dules. The experimental fields were cultivated with radishes
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(Raphanus sativus) in P1, P4, P7, P11, and P14, vegetable
rape (Brassica napus) in P2 and P5, amaranth (Amaranthus
mangostanus) in P6, P9, and P13, chili (Capsicum frutescens)
in P3, and, garlic (Allium satvum) in P8 and P12. The soil was
fallow in P10. Seeds of radishes and amaranth were directly
sown in the experimental plots, while seedlings of the
remaining vegetable crops were grown elsewhere and were
then transplanted into the experimental fields. The soil was
manually watered if there was no rainfall within a few days
after vegetable sowing or transplanting. Each plot was
annually irrigated with 6, 20, 19, and 25 mm of water during
the four investigation years, respectively. Soon after the
harvest of a vegetable crop, the soil was tilled to a depth of
approximately 12–15 cm. At the same time, basal fertilizers
were incorporated into the soil, and the next type of vegetable
crop was then immediately sown or transplanted at the site.
Organic manure and chemical fertilizers were applied to
the plots in the fertilized treatments at rates of 1,074–1,312
(with a mean of 1,195) kg N ha−1 yr−1 (Tables 2 and 3). In the
fertilized plots, organic manure, compound fertilizers and/or
urea were basally applied independently or in combination
for all crops, while urea was additionally top‐dressed for
vegetable rape and garlic. No fertilizer containing N was
added in P2 through P14 to the plots treated without N
addition, and only organic manure was basally applied at an
amount of approximately 130 kg N ha−1 in P1 to all plots of
both field treatments. In P6, human manure slurry from an
indoor lagoon of a local farmhouse, in combination with
soybean cake, was basally applied. The detailed schedules,
fertilizer types and doses for individual fertilization events
of P1 to P14 are described in Table 1. The N fertilization
rates for all individual periods are summarized in Table 2,
and the annual N addition rates are listed in Table 3.

2.2. Nitrous Oxide Flux Measurements

[7] Measurements of N2O fluxes were initiated on 21
September 2004 (18 days after the basal application of
organic manure and radish sowing that followed the tillage
occurring 2 days previously) and continued until the end of
the investigation period, spanning 1,475 days. At the center
of each replicate plot, one miniplot was permanently defined
for simultaneous measurements of N2O and NO fluxes. The
N2O and NO fluxes were measured by sampling parallel air
samples with an opaque static chamber, and the samples
for N2O were analyzed with a gas chromatograph (GC)
equipped with an electronic capture detector (ECD) [Wang
and Wang, 2003; Zheng et al., 2008]. A stainless steel
base collar (0.5 m × 0.5 m) with a groove on the top, which
could be filled with water, was inserted 10 cm into the soil
and remained there during the entire investigation period.
For simultaneous measurement of N2O and NO fluxes,
a portable stainless steel chamber (0.5 or 1.0 m high, depend-
ing on the height of the vegetable plants) that exactly fit the
groove was mounted onto the base collar. A gas‐tight seal
was ensured by filling the groove with water. Gas samples
from the headspace for N2O measurement were taken with a
60 mL gas‐tight plastic syringe via a Teflon tube that was
connected to a three‐port valve. A second tube (F1 cm ×
10 m) was installed on another side of the stainless steel
chamber to balance the air pressure between the inside and
outside conditions of the chamber. Two ventilators driven by
12 VDC were installed inside the top of the chamber to avoid
the formation of gas concentration gradients. At each mini-
plot, simultaneous N2O and NO fluxes were usually mea-
sured at intervals of 2–3 days by sampling between 09:00
and 11:00 local standard time (LST). However, immediately
following events of rainfall, watering, fertilization or tillage,

Table 1. Crop Species, Fertilization Events, and Fertilization Ratesa

Vegetable

Fertilization

Date Type Fertilizers Rated

P1 Radish (R. sativus)b 3 Sep 2004 Basal Soybean cake 130
P2 Vegetable rape (B. napus)c 29 Nov 2004 Basal Swine manure, CF 205

28 Feb 2005 TD Urea 208
P3 Chili (C. frutescens) c 29 May 2005 Basal Rapeseed residues, silkworm manure 138
P4 Radishb 2 Sep 2005 Basal Urea, soybean cake 548
P5 Vegetable rapec 27 Nov 2005 Basal Rapeseed cake, CF 326

16 Jan 2006 TD Urea 312
P6 Amaranth (A. mangostanus)b 27 Mar 2006 Basal Human manure slurry, soybean cake 382
P7 Radishb 17 Aug 2006 Basal Urea, soybean cake 397
P8 Garlic (A. satvum)c 4 Nov 2006 Basal Rapeseed cake, CF 177

4 Mar 2007 TD Urea 208
P9 Amaranthb 2 Jun 2007 Basal Rapeseed cake, CF 118
P10 Fallow 7 Aug 2007 Basal Urea 153
P11 Radishb 21 Aug 2007 Basal Urea, soybean cake, CF 418
P12 Garlicc 12 Nov 2007 Basal Rapeseed and soybean cake, CF 144

11 Mar 2008 TD Urea 249
P13 Amaranthb 29 May 2008 Basal Rapeseed cake, CF 201
P14 Radishb 20 Aug 2008 Basal Rapeseed cake, CF 281

aThe same plant species were grown in both the fertilized and unfertilized plots. Radish (Raphanus sativus) was cultivated during P1 (3 Sep ∼ 28 Nov 2004),
P4 (2 Sep ∼ 26 Nov 2005), P7 (10 Aug ∼ 3 Nov 2006), P11 (21 Aug ∼ 11 Nov 2007) and P14 (20 Aug ∼ 5 Oct 2008, not harvested); vegetable rape (Brassica
napus) during P2 (29 Nov 2004 ∼ 22 May 2005) and P5 (27 Nov 2005 ∼ 26 Mar 2006); amaranth (Amaranthus mangostanus) in P6 (27 Mar ∼ 9 Aug 2006),
P9 (2 Jun ∼ 3 Aug 2007) and P13 (25 May ∼ 19 Aug 2008); chili (Capsicum frutescens) during P3 (23 May ∼ 1 Sep 2005); and garlic (Allium astvum) during
P8 (4 Nov 2006 ∼ 1 Jun 2007) and P12 (12 Nov 2007 ∼ 24 May 2008). The soil was fallow during P10 (3 Aug ∼ 20 Aug 2007). Basal, amended prior to
vegetable sowing/transplanting. TD, top dressing. CF, compound fertilizer, which is a mixture of (NH4)H2PO4 and KCl, with N:P2O5:K2O = 15%:15%:15%.

bSeeds were directly sown in the fields.
cSeedlings were grown outside and were transplanted into the field.
dIn kg N ha−1.

MEI ET AL.: N2O EMISSIONS FROM VEGETABLE FIELDS D12113D12113

3 of 14



daily measurements were conducted for 1–2 weeks. To
determine N2O fluxes, four (before 15 June 2005) or five air
samples were taken from the chamber headspace during
a period of 18 (in a growing or warm season) or 32 min (in
a cold winter season or fallow period) at intervals of
approximately 6 or 8 min. The air temperature inside the
chamber and the air pressure of the ambient atmosphere were
simultaneously recorded.
[8] The gas samples for N2O measurement were stored

in syringes for at most 10 h before they were analyzed
with a GC‐ECD instrument. The samples collected before
6 September 2005 were analyzed using the GC‐ECD DN
method defined by Zheng et al. [2008]. The samples col-
lected from 6 September 2005 through 17 December 2006
were analyzed with the GC‐ECD DN‐Ascarite method
described by Zheng et al. [2008], and those samples col-
lected later were analyzed with the GC‐ECD DN‐CO2

method defined by Zheng et al. [2008] and Wang et al.

[2010]. The DN‐Ascarite and DN‐CO2 methods used dini-
trogen (N2) as the carrier gas, similar to the DN method.
However, an ascarite (a type of sodium‐hydroxide‐coated
silica) filter was additionally adopted in the DN‐Ascarite
method to remove carbon dioxide (CO2) from the air sam-
ples [e.g., Butterbach‐Bahl et al., 1997], and a high con-
centration of CO2 in N2 (N2:CO2 = 90:10) was directly
introduced into the ECD cell to buffer the unexpected
effects of CO2 in the samples on the N2O signals [Zheng
et al., 2008; Wang et al., 2010]. The DN‐CO2 method
was adopted as a substitute for the DN‐Ascarite method
because it was more stable for N2O analysis and more
convenient for routine maintenance compared with DN‐
Ascarite [Zheng et al., 2008; Wang et al., 2010]. Further
details on the chamber operation and sampling procedures
are provided by Zheng et al. [2008] and Mei et al. [2009].
[9] The N2O mixing ratios of the samples were calibrated

with reference gases (0.3 to 1.0 mmol mol−1 N2O in dry air)

Table 3. Annual Doses of N Fertilizer Added (FN), Total Water Input (Rainfall + Watering), Mean Air Temperature, Total Nitrous Oxide
(N2O) Release, and Direct N2O Emission Factor (EFd)

Perioda
FN

(in t N ha−1 yr−1)
Rainfall + Watering

(mm)
Air Temperature

(°C)

N2O releases (kg N ha−1 yr−1)

EFd (%)Fertilized Unfertilizedb

Mean SE Mean SE Mean SE

Annual 1 1.098 905 15.2 51.6 10.2 4.14 1.29 4.32 0.93
Annual 2 1.312 1026 15.5 66.6 1.6 1.23 0.58 4.98 0.13
Annual 3 1.074 753 16.3 18.9 0.6 1.31 0.17 1.64 0.05
Annual 4 1.294 873 15.4 8.2 0.6 0.51 0.03 0.59 0.04

Mean 1.195 889 15.6 36.3 16.0 1.81 1.00 2.88 1.24
SD 0.126 112 0.5 27.7 1.73 2.14
CV (%) 11 13 3 76 96 74

aEach period spanned from 21 September through 20 September of the following year.
bNo fertilizer nitrogen was applied to the unfertilized vegetable fields.

Table 2. Total Amount of N2O Emissions (N2OST), Average Soil Moisture (Msa), Average Soil Temperature (at 5 cm; Tsa), Amount of
Applied Nitrogen Fertilizers (FN), and Direct Emission Factors (EFd) for Individual Vegetable Seasons/Periods in 2004–2008a

Period
FN

(t N ha−1)

Tsa (°C) Msa (%WFPS)

N2OST (kg N ha−1)

EFd
b (%)N Applied No N Applied

Mean SD Mean SD Mean SE Mean SE Mean SE

P1 0.130 18.7 3.2 59 8 1.97 0.43
P2 0.412 8.6 5.9 61 12 2.22 0.73 1.48 0.52 0.18 0.22
P3 0.138 26.4 3.4 62 16 4.03 1.33 0.40 0.08 2.62 0.96
P4 0.548 20.6 5.4 65 7 46.64 12.28 0.48 0.25 8.43 2.24
P5 0.534 6.9 4.8 56 18 0.56 0.04 0.26 0.13 0.06 0.03
P6 0.382 21.3 5.2 56 14 54.70 2.89 0.52 0.21 14.20 0.76
P7 0.396 23.3 5.5 55 11 10.15 2.66 0.29 0.09 2.49 0.67
P8 0.385 8.4 5.8 56 14 2.31 0.05 0.59 0.09 0.45 0.03
P9 0.118 24.8 2.5 65 18 2.15 0.53 0.30 0.05 1.57 0.45
P10 0.153 28.3 2 62 11 2.71 0.55 0.10 0.01 1.71 0.36
P11 0.418 20.1 5.4 66 09 10.99 1.13 0.27 0.04 2.56 0.27
P12 0.394 9.5 6.9 54 10 2.86 0.60 0.18 0.04 0.68 0.15
P13 0.201 25.4 2.9 57 13 1.61 0.29 0.15 0.04 0.73 0.14
P14 0.281 24.2 1.6 65 13 2.96 0.42 0.12 0.03 1.01 0.15

Meanc 12.57 5.90 0.57 0.17 3.09 1.34
SDc 19.32 0.39 4.39
CV (%)c 154 67 142

aDefinitions of P1 through P14 are found in Table 1. SD is standard deviation, and SE is standard error of three (but six for P1 with N applied) replicate
plots.

bThe direct emission factor was not determined in P1, as the measurements began three weeks after basal fertilization, and thus, intensive emissions due
to N application might have been missed.

cP1, P10, and P14 are not included in the statistics.
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from the National Standard Matter Center (Beijing, China).
Each flux was calculated using the initial change rate of the
N2O concentrations within the chamber headspace, head-
space volume, the soil surface area covered by the chamber,
and N2O density. The data on air pressure and chamber
headspace air temperature were used to correct the N2O
density at 273 K and 1,013 hPa to the actual headspace air
conditions in our flux calculations. The initial change rate
was determined by nonlinear fitting of the four or five
measured concentrations against the enclosure time [Kroon
et al., 2008]. Only the relationship of the measured N2O
concentrations with enclosure time was statistically signifi-
cant at p < 0.05, and the initial change rate was accepted to
yield a valid flux. The flux measurement was regarded as
null whenever the relationship was not statistically signifi-
cant. We compared the values of R2 and the fluxes between
the linear and nonlinear regressions to check the nonline-
arity in the gas concentrations measured from the chambers.
Only when both values of the significant nonlinear regres-
sion (p < 0.05) were higher than those of the significant
linear regression (p < 0.05) was the flux calculated with
the initial change rate determined with the significant non-
linear curve accepted. Otherwise, the flux calculated with
the significant linear regression was accepted. For the DN‐
Ascarite and DN‐CO2 methods, the precisions for the
analysis of N2O concentrations in ambient air were ensured
to be <1% [Zheng et al., 2008; Wang et al., 2010]. Taking

into account the enclosure time of 32 min, these precisions
resulted in flux detection limits of 7 and 14 mg N m−2 h−1 for
the chamber heights of 0.5 and 1.0 m, respectively.
[10] Details on the simultaneous measurement of NO fluxes

were described by Mei et al. [2009].

2.3. Auxiliary Measurements

[11] In addition to recording field management practices,
such as the dates and input rates of fertilizers and the amount
of water input, we also measured soil temperature (at 5 cm),
soil moisture (at 0–6 cm), ambient air temperature, precip-
itation and levels of ammonium (NH4

+), nitrate (NO3
−) and

water dissolvable organic carbon (DOC) in the soils of the
cultivated layer (0–10 cm). Daily precipitation and hourly
air temperature were recorded by an automatic climate sta-
tion located nearby (approximately 200 m away). The soil
temperature in the direct vicinity of the chamber bases was
measured daily using a thermocouple. Simultaneously, the
ratio of the soil water content by volume was measured
using a portable frequency domain reflector sensor (RDS
Technology Co., Ltd Jiangsu, Nanjing, China). Soil mois-
ture in the water‐filled pore space (WFPS) was determined
using the measured volumetric water content and soil porosity
as 51% [Mei et al., 2009]. Soil (0–10 cm) samples were col-
lected weekly using a 3 cm diameter gauge auger for NH4

+,
NO3

− and DOC analysis. To measure NH4
+ and NO3

− levels,
fresh soil samples were extracted with a 0.01 mol L−1 CaCl2

Figure 1. Ammonium, nitrate and dissolvable organic carbon (DOC) levels in the soil of the cultivated
layer (at 0–10 cm depth). Closed and open cycles denote the fertilized and unfertilized treatments (in
terms of nitrogen addition), respectively. Definitions of P1 through P14 are found in Table 1.
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solution (soil:water = 1:10) by shaking them for 1 h. The
extracts were frozen at −18°C and thawed overnight at 4°C
before being analyzed with an automatic nitrogen analyzer
(AA2, BRAN & Lubbe, Nordstedt, Germany). Measurement
of DOC was conducted from late February in 2005 to late
July in 2006. Fresh soil samples were frozen at −18°C and
thawed overnight at 4°C before extraction with deionized
water (soil:water = 1:5) [e.g., Lu, 2000]. The extracts were
immediately analyzed for DOC with a Multi N/C 3000
analyzer (Analytic Jena AG, Germany).

2.4. Data Analysis and Statistics

[12] As comparison studies [Zheng et al., 2008; Wang
et al., 2010] have concluded, there are no obvious differ-
ence in the N2O fluxes determined by the GC‐ECD methods
of DN‐Ascarite, DN‐CO2, or AM, which uses an argon‐
methane mixture as the carrier gas, whereas the DN method
results in significantly higher fluxes (the bias is especially
problematic when opaque static chambers are used for gas
sample collection). Based on a long‐term comparison
involving four field treatments (two of which were used in

this study) that lasted for approximately 1.5 years, Zheng
et al. [2008] proposed an approach to correct the biases for
the N2O fluxes yielded by the DN method. Following that
approach, we added 72, 22, −5, −38, and −64 mg N m−2 h−1

to the DN fluxes of <−30, −30 ∼ 0, 0 ∼ 30, 30 ∼ 100, and
100 ∼ 200 mg N m−2 h−1, respectively, to correct the biases.
[13] The single N2O flux measured on a day was directly

extrapolated to the daily total emissions. Emissions on the
days without measurements were estimated using the
arithmetic mean of the two temporally adjacent observa-
tions. By summing the daily fluxes, we obtained seasonal/
periodical or annual cumulative emissions. This approach
to estimate seasonal/periodical or annual total emissions
was based on two assumptions: (1) the single flux measured
during 09:00–11:00 LST was representative of the daily
mean, and (2) the missing daily N2O emissions could be
represented by the arithmetic mean flux of the two tempo-
rally adjacent observations [Yao et al., 2009].
[14] The total nitrous oxide released from a given crop

cultivation area is composed of both background and direct

Figure 2. Nitrous oxide (N2O) fluxes during the entire investigated period. Closed and open cycles
denote the fluxes from the fertilized and unfertilized plots, respectively. Solid and open arrows indicate
the dates of basal fertilization and urea top dressings, respectively, while dashed arrows indicate the tillage
dates. Each datum is the mean of three replicates, with the error not shown.
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emissions. According to concept of the IPCC, direct emis-
sions are derived from nitrogenous fertilizer(s) applied in
the current season/period or year [IPCC, 1997, 2006].
Background emissions are derived from nitrogen sources
other than the fertilizer(s) applied in the current season/
period or year [Bouwman, 1996]. Annual or seasonal/peri-
odical direct and background emission factors are key
parameters for estimating regional N2O emissions from N‐
fertilized cropland. The former is determined as the loss rate
of fertilizer N applied in the current season/period or year
via N2O emissions, and the latter is calculated the cumula-
tive emissions from a unit area of land free from the
application of nitrogenous fertilizers in the current season/
period or year. In this study, we calculated the seasonal/
periodical or annual direct emission factor (EFd, in %) of the
applied nitrogenous fertilizers (N, in kg N ha−1) using the
cumulative emissions from the fertilized treatment (EF, in kg
N ha−1) and the unfertilized field plots (E0, in kg N ha−1),
specifically EFd = (EF − E0)/N × 100%. The standard error
(SEEF, in %) of an EFd was estimated using the standard
errors of the three spatial replicates for the EF (SEF, in kg
N ha−1) and E0 (SE0, in kg N ha−1), following SEEF = 100/N ×
(SEF

2 + SE0
2)1/2.

[15] All of the simultaneously measured data on NO
emissions included in this report were directly cited from the
publication of Mei et al. [2009].
[16] We used SYSTAT 5.0 software for Windows (SPSS,

Inc., USA) for statistical analyses. The significance levels

for linear and nonlinear regression curves were determined
with an F test. In addition, we used Origin 8.0 (Origin Lab
Corporation, USA) for graph preparation.

3. Results

3.1. Environmental Conditions and Content of Soil
Ammonium, Nitrate, and DOC

[17] In addition to the description provided by Mei et al.
[2009] of the meteorological conditions and soil climate
for P1 through P13, we measured the daily precipitation,
daily air temperature, soil temperature and soil moisture for
P14 in this study. The monthly mean soil temperatures
during the four full‐year periods ranged from 1.8°C to 3.3°C
in January and from 25.8°C to 29.0°C in July, with means of
soil temperatures during individual vegetable growing per-
iods varying from 6.9°C to 28.3°C (Table 2). During the
entire investigation period, the annual mean air temperature
ranged from 15.2 to 16.3°C, with a mean of 15.6°C and a
standard deviation (SD) of 0.5°C (Table 3). The annual
precipitation varied from 734 to 1,007 mm (mean: 872 mm;
SD: 113 mm), with 44–56% of precipitation occurring from
June through August and the remaining being distributed
more or less evenly across other times of the year. Rainfall,
in association with watering, resulted in 753 to 1,026 (mean:
889; SD: 112) mm yr−1 of water being input into the veg-
etable field (Table 3). The soil moisture content during the
entire investigation period ranged from 31 to 93% WFPS,
with the means for individual periods ranging from 54 to
66% (Table 2).
[18] The levels of NH4

+‐N, NO3
−‐N and DOC in the soil

are shown in Figure 1. The ammonium levels during the
entire investigated period ranged from 2 to 180 (mean: 14) and
0.1–21 (mean: 5) mg N kg−1 dry soil (d.s.) in the N‐fertilized
and unfertilized plots, respectively, with the former being
higher than the latter by a factor of 2.9 on average (p <
0.0001). The nitrate levels simultaneously measured in the
plots with N fertilizer addition ranged from 0.3 to 212
(mean: 23) mg N kg−1 d.s., and these levels were higher
than those of the unfertilized plots (ranging from 0.1 to 134
(mean: 9) mg N kg−1 d.s.) by a factor 2.5 on average (p <
0.0001). The DOC levels measured from mid‐2005 to mid‐
2006 were 51–226 (mean: 86) and 43–175 (mean: 71) mg C
kg−1 d.s. in the N‐fertilized and unfertilized plots, respec-
tively, with the former being clearly higher, by 21% on
average (p < 0.05).

3.2. Nitrous Oxide Fluxes

[19] In the 4 year study period, we conducted a total of
4158 flux measurements and obtained 4063 valid N2O flux
values that were determined to have statistically significant
(p < 0.05) initial increase rates of N2O concentrations
against enclosure time. Among these valid fluxes, 71% were
above the detection limits for the chamber heights of 0.5
and 1.0 m, respectively. The mean N2O fluxes of the three
replicate plots for both the N‐fertilized and unfertilized
treatments during the entire investigation period are illus-
trated in Figure 2. Soon after the application of N fertilizers
in nonwinter seasons, the N2O fluxes from the fertilized
plots quickly increased to a maximum and then gradually
declined to the prefertilization levels (Figure 2). This
occurred following almost all basal fertilization events that

Figure 3. Interactive effects of the seasonal/periodical
average soil (5 cm) temperature (Tsa) and fertilizer nitrogen
addition rate (FN) on (a) the seasonal/periodical cumulative
nitrous oxide (N2O) emissions (N2OST) and (b) direct N2O
emission factors (EFd). The given data are means of repli-
cates (three observations for N2OST of the fertilized treat-
ment and 13 observations for the unfertilized plots).
Vertical bars indicate standard errors. The open diamond
symbol is for P4, in which human manure slurry was exclu-
sively applied.
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coincided with soil temperatures ranging from 9 to 29°C
(mean: 21°C) [Mei et al., 2009]. However, when soil tem-
peratures were at low levels, N2O emission following N
fertilizer addition was not obvious, as was seen for the cases
of urea top dressing on 28 February 2005, 27 November
2005, 16 January 2006, 4 March 2007, and 11 March 2008
(Figure 2), when soil temperatures ranged from 3.3 to
12.2°C (mean: 7.2°C) [Mei et al., 2009]. The N2O fluxes
from the fertilized plots during the entire investigation
period ranged from −36.1 to 66558.7 (mean: 671.2) mg N
m−2 h−1 and were, on average, 28 times higher (p < 0.001)
than those from the unfertilized plots (ranging from −2.9 to
391.0 mg N m−2 h−1, with a mean of 22.8 mg N m−2 h−1).
[20] Of the 14 (P1–P14) experimental periods, five were

used for radish crop planting, two for vegetable rape, one for
chili, three for amaranth, and two for garlic, and during the
remaining short period, the soil was fallow (Table 1). The
N2O fluxes for the radish, vegetable rape, chili, amaranth,
and garlic growing periods were, on average, 1583, 48, 173,

1532, and 120 mg N m−2 h−1, respectively, in the fertilized
plots and 22, 28, 16, 20, and 9 mg N m−2 h−1, respectively,
in the unfertilized plots (Figure 2). As these data show, the
highest seasonal/periodical means of N2O fluxes from the
fertilized plots appeared in the radish and amaranth growing
periods, while the lowest values of the fertilized fields were
observed in the vegetable rape seasons.

3.3. Contributions of Peak Emissions to Seasonally/
Periodically Cumulative N2O Releases

[21] In the fertilized plots, intensive peak emissions over-
whelmingly determined the seasonal/periodical or annual total
amounts of N2O released, although they usually occurred
within relatively small time spans. In the radish growing sea-
sons, for example, peak emissions occurred during approxi-
mately 35% of the seasonal length but accounted for more
than 86% of the seasonal cumulative N2O releases. A signifi-
cant contribution of peak emissions to seasonal cumulative
releases also occurred during the rape, chili, amaranth and

Figure 4. Nitrous oxide (N2O) fluxes during the growing seasons with cultivation of the same vegetable
crop in different years and the simultaneously observed soil moisture in the water‐filled pore space
(WFPS) and air temperature. The given fluxes and soil moisture are the means of three replicate fields,
and standard errors are not shown for the purpose of figure clarity. The given temperatures are the means
of hourly measured values, and error bars are not shown. (a, b, and c) Radish seasons (P4, P7, P11), and
(d, e, and f) amaranth seasons (P6, P9, P13). The inserts in Figures 4a and 4d present the seasonal total
N2O emissions in kg N ha−1 (see Table 2 for the specific figures). The different letters above the bars of
each insert indicate significant differences at p < 0.05.
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garlic growing periods. During the entire investigation
period, peak emissions from the fertilized plots contributed
over 86% of the total amount of N2O emissions.

3.4. Effects of Temperature and N Addition on
Seasonal/Periodical Total N2O Emissions

[22] The cumulative N2O emissions for the 14 periods of
both field treatments are listed in Table 2. The cumulative
N2O emissions from the fertilized field plots in individual
full vegetable seasons (P1, P10 and P14 were excluded)
varied from 0.56 (in P5) to 54.7 (in P6) kg N ha−1, with a
CV of 153% for the 11 observations. The total N2O emis-
sions in the 11 individual full vegetable seasons of the unfer-
tilized plots ranged from 0.15 (P13) to 1.48 (P2) kg N ha−1,
with a CV of 88%.
[23] When we plotted the seasonally/periodically accu-

mulated N2O emissions (N2OST, in kg N ha−1) from both
the fertilized and unfertilized fields against the product of
the corresponding seasonal/periodical averages of soil tem-
peratures (5 cm depth; Tsa, in °C) and quantities of applied
N fertilizers (FN, in t N ha−1), an exponential correlation
clearly appeared (Figure 3a), even though significant devi-
ation occurred for the case of P6, which showed an
extremely high cumulative emissions level. The correlation
could be described with an exponential equation (see the
regression curve in Figure 3a). As the determination coef-
ficient (R2) of this nonlinear regression indicates, interac-
tions between soil temperatures and quantities of applied
nitrogen fertilizers could explain up to 73% of the variation
in the seasonally/periodically accumulated N2O emissions.
These results suggest that the seasonal/periodical variations
in N2O emissions from the conventional vegetable fields
were mainly regulated jointly by soil temperature and nitro-
gen availability. The equation shown in Figure 3a implies

that direct extrapolation of any field measurements made
during a short period of less than a year to the annual or sub-
decadal scale will most likely yield considerable uncertainties.

3.5. Direct and Background N2O Emissions Factors

[24] Based on the seasonally/periodically accumulated
quantities of N2O emissions from the fertilized and unfertil-
ized treatments and the N fertilizer addition rates (Table 2),
we estimated the EFds for individual vegetable growing
periods. As shown in Table 2, the EFds of individual full
vegetable seasons ranged from 0.06 to 14.2%, with a mean of
3.09% (data from P1, P10 and P14 were excluded). These
seasonal EFds showed high variation, with a CV of up to
142%. Further analysis indicated that approximately 43%
of the variation in the EFds could be explained by the inter-
action of soil temperature and the rates of applied N fertili-
zers. This is illustrated by the regression equation presented
in Figure 3b.
[25] The equation shown in Figure 3b suggests that, in a

vegetable field, the conversion rates of applied N fertilizers
to N2O are stimulated by the interaction of soil temperature
and N availability. This clearly indicates that an EFd deter-
mined from field observations during a short period will
underestimate or overestimate N2O emissions if it is directly
extrapolated to annual and subdecadal scales while ignoring
the seasonality in soil temperature, interannual variations
in climate and seasonal/periodical or interannual unevenness
of fertilizer distribution.
[26] Using the year‐round observations from the four

study years listed in Table 2, the annual total emissions of
the fertilized and unfertilized plots were estimated and are
presented in Table 3. The N2O annual emissions amounted
to 8.2–66.6 and 0.51–4.14 kg N ha−1 yr−1 in the fertilized
and unfertilized treatments, respectively. The annual EFds
were determined to be 2.88 ± 2.14% (standard deviation
of four observations) on average. This mean value is larger
than the IPCC [2006] default (1.0%) by a factor of approx-
imately 3, and implies a substantial contribution of vegetable
cultivation to regional N2O emissions from croplands. The
annual cumulative release from the unfertilized plots pro-
vided annual background N2O emissions factors of 1.81 ±
1.73 (standard deviation of 12 observations: three spatial
replicates, each with four interannual replicates) kg N ha−1

yr−1, which is equivalent to approximately 5% of the direct
emissions. Interannual CVs of 74 and 96%were found for the
annual direct and background emission factors, respectively.
These high interannual CVs highlight the necessity of con-
ducting multiple‐year field measurements for quantifying
emission factors.

3.6. Variation in N2O Emissions Among
Nonwinter Seasons

[27] Huge variations in seasonal EFds also occurred for
nonwinter vegetable seasons, not only among different veg-
etable crops, but also for the same vegetable species culti-
vated at comparable times in different years. For instance, the
CVs of the EFds were 76% for the three full seasons of
radishes cultivated in 2005 (P4), 2006 (P7) and 2007 (P11)
and 137% for the three full seasons of amaranth planted
in 2006 (P6), 2007 (P9) and 2008 (P13). The total N2O
emissions in P4 and P6 were significantly higher, by factors

Figure 5. Relationship between the logarithm of the sum
of nitric oxide (NO) and nitrous oxide (N2O) fluxes (in g
N ha−1 d−1) and the logarithm of ammonium N plus nitrate
N levels in the cultivated soil layer (in mg N kg−1 dry soil).
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of 4–5 (p < 0.05) and 25–35 (p < 0.001), respectively,
compared with the other two growing seasons for the same
vegetable species (Figures 4a and 4d). As a result, the EFds in
P4 and P6 were 2‐ to 18‐fold higher than for the other full
seasons of the same vegetable crops (Table 2).

3.7. Relationship Between NO Plus N2O Emissions and
Mineral Nitrogen Contents

[28] According to the “hole‐in‐the‐pipe” conceptual
model, the amount of NO plus N2O emitted from ecosys-
tems is a function of the extractable inorganic nitrogen. Our
data show a significant linear correlation between the
logarithms of NO plus N2O mass fluxes (in g N ha−1 d−1)
and the logarithms of extractable inorganic nitrogen levels
(in mg N kg−1 d.s.), with slopes varying from 0.59 ± 0.10
(standard deviation; same below) for the unfertilized plots
to 0.68 ± 0.15 for the fertilized fields and intercepts from
−0.02 ± 0.11 to 0.32 ± 21, respectively (Figure 5). The
parameters were similar those reported by Davidson and
Verchot [2000] for pasture, forest, and agricultural lands
(with slopes ranging from 0.53 to 0.79 and intercepts from
−0.24 to 1.08).

3.8. Relationship Between NO to N2O Ratios
and Soil Moisture

[29] Using the N2O fluxes shown in Figure 2 and the
simultaneously measured NO fluxes cited from Mei et al.
[2009], we calculated the logarithms of the NO to N2O
ratios of the daily released nitrogen mass on a hectare basis
(g N ha−1 d−1). Negatively linear relationships significantly
(p < 0.001) appeared in both the fertilized and the unfer-
tilized plots (Figure 6) between the logarithms of the ratios
and the simultaneously observed soil moisture (at 0–5 cm

depth) in the water‐filled pore space (WFPS), which was
expressed as fractions of 0–1 (adapted from Mei et al.
[2009]).

4. Discussion

4.1. Uncertainties in Estimates of Annual
or Subdecadal Emissions

4.1.1. Uncertainties Associated With Temporal
Resolution of Measurements
[30] Almost all available data on N2O emission fluxes from

terrestrial ecosystems originate from intermittent measure-
ments made using static chamber techniques [e.g., Stehfest
and Bouwman, 2006] (www.mnp.nl/en/publications/2006).
Scientists are often concerned with the uncertainties induced
by intermittent field measurements for seasonal/periodical or
annual estimates, which usually poorly represent the intrinsic
high temporal variability in N2O emission from terrestrial
ecosystems [e.g., Lin et al., 2010]. Taking into account the
12–13% overestimation of daily emissions under clear
weather by single measurements made at 09:00–11:00 LST
[Yao et al., 2009; Liu et al., 2010], the annual occurrence
frequency of 40% for clear weather days during our inves-
tigation period, and that in gap fillings of missing daily fluxes
the positive and negative errors were almost offset by each
other, direct extrapolation of our daily single measurements
could overestimate the annual cumulative emissions by only
about 4%. As the latest study [Liu et al., 2010] shows, this
error could be even avoided if the daily single measurements
were performed one hour earlier than the time of our study.
4.1.2. Uncertainties Associated With Spatial
Replicate Number of Measurements
[31] As the results stated above show, three spatially

replicated measurements for each field treatment still poorly
covered the large spatial variability, and then led to large
uncertainties in the estimates of seasonal/periodical and
annual cumulative emissions (with spatial CVs of 9–105%
(mean: 40%) and 4–82% (mean: 28%), respectively). This
implies that increasing the number of spatial replicates
should be a priority for reducing the current uncertainties in
our estimates of annual total emissions, as well as EFds.
4.1.3. Uncertainties Induced by Short‐Time
Observations or a Lack of Interannual Replicates
[32] Our results indicate that short‐period measurements

may result in very large uncertainties in the estimation of
annual or subdecadal N2O emissions from open vegetable
fields. Using the observations listed in Tables 1 and 2, we
simulated the magnitude of uncertainty resulting from sim-
ple extrapolation of short‐term measurements. With regard
to EFds, simply extrapolating the observations of a particular
vegetable season to an annual scale could produce uncer-
tainty magnitudes of 4% to 23‐fold (with a mean of 120%);
using the observations of a certain year to represent the EFd
of another year could yield an overestimation or underesti-
mation of 10% to sevenfold (with a mean of 90%), while it
could underestimate or overestimate subdecadal direct emis-
sion factors by 50–70%. These magnitude figures indicate
that applying the emission factor approach recommended by
the IPCC [2006] Tier 2 guidelines, but using observed emis-
sion values that poorly represent seasonality and/or interan-
nual variability will inevitably yield large uncertainties in the

Figure 6. Relationship between the logarithm of the ratios
of nitric oxide (NO) to nitrous oxide (N2O) fluxes (in g N
ha−1 d−1 for either gas) and soil moisture in the water‐filled
pore space (WFPS). The fluxes of N2O originated from this
study, and the simultaneously measured NO fluxes and soil
moisture were adapted from Mei et al. [2009].

MEI ET AL.: N2O EMISSIONS FROM VEGETABLE FIELDS D12113D12113

10 of 14



estimates of annual N2O emissions from vegetable fields for
those years lacking measurements. Apparently, it is neces-
sary to identify the factors regulating N2O emissions from
vegetable fields and to understand their functional mecha-
nisms to develop better estimation approaches, such as
empirical or process‐oriented models.

4.2. Factors Regulating N2O Emissions

4.2.1. Temperature‐Determined Low Direct Emission
Factors in Winter Seasons
[33] The smallest EFds of full individual vegetable sea-

sons were found whenever winter vegetables (e.g., vegetable
rape and garlic) were cultivated (Table 2). Our results sug-
gest that the seasonal EFds became larger either the earlier a
winter vegetable season was started or the later it was ter-
minated. With regard to vegetable rape, for instance, the
EFds decreased from 0.18% for the season terminated in late
May to 0.06% for the one that ended in late March, though
the N fertilizer addition rate of the latter period was 30%
higher. The mean topsoil temperature was 8°C on average in
the four winter vegetable seasons, with a mean seasonal EFd
of 0.34%, but it was 23°C on average in the nonwinter
vegetable seasons, with a mean EFd of 1.81% (P4 and P6,
which showed extremely intensive emissions, were excluded
from these statistics). The significantly different temperature
(p < 0.001) very likely accounted for the several‐fold dif-
ference in the EFds between the winter and nonwinter veg-
etable seasons (p < 0.01). This implies that applying more
inorganic and organic fertilizers to winter crops could be a
mitigation option for N2O emissions, as the added nitrogen
and carbon can be immobilized by microbes instead of being
immediately denitrified to N gases and then slowly released
later for nonwinter crops.
4.2.2. Moisture‐ and Substrate‐Dominated N2O
Emissions in Nonwinter Seasons
[34] The much higher EFds observed in P4 and P6 than in

others (Table 2) were most likely due to: (1) a greater
amount of nitrogen substrate being available from the
basal fertilizers for nitrification and denitrification, whereby
N2O is produced as a byproduct or an immediate product;
(2) more favorable soil moisture conditions for N2O pro-
duction by denitrification immediately following fertilizer
incorporation; or (3) a greater amount of carbon substrate
being available from the application of lagoon‐stored
organic slurry. The first explanation may be supported by
the data on nitrogen addition rates listed in Table 2. While
the same fertilizers (urea plus soybean cake) were basally
applied in the three radish seasons (Table 1), the addition
rate of pure N in P4 was 31–38% higher than in P7 and P11.
Similarly, the fertilizer N basally incorporated in P6 was
higher by factors of 1.9 and 3.2 compared with P9 and P13,
respectively. The higher N addition rates might have pro-
vided more N substrate for the microbial processes related to
N2O production and, thus, stimulated more intensive emis-
sions. The second reason may be supported by the precip-
itation and soil moisture data [Mei et al., 2009]. Of the
seasonal total precipitation, 84% fell in the early stage (from
three days before to 20 days after incorporation of basal
fertilizers) of P4 but only 41% fell in the same stage of P7
or P11. The higher precipitation led to significantly higher
(p < 0.05) soil moisture in the early stage of P4 than in the
same stage of the other two radish seasons (85% versus 74%

WFPS on average) (Figure 4b) and obviously lower (P <
0.05) air temperatures by 1.8–5.1°C (Figure 4c). Of the
seasonal total precipitation in P6, P9, and P13, 29%, 10%,
and 25% fell in the early stage of the respective amaranth
seasons [Mei et al., 2009]. Although the precipitation in the
early stage of P6 totaled only 46 mm, a single intensive
rainfall event of 33 mm occurring on the eighth day after
fertilizer incorporation led to a rapid increase in soil mois-
ture to a level of approximately 82% WFPS. This soil
moisture was higher by 24% on average (p < 0.001) than in
P9 and P13 and remained until the end of the early stage
(Figure 4e), which was most likely due to the much cooler
air temperature in P6 (lower by 10–12°C on average; p <
0.001) because this season started in spring, approximately
two months earlier than the other amaranth seasons. The
significantly higher soil moisture might have facilitated N2O
production through microbial denitrification and, thus, stim-
ulated more intensive emissions. The third reason is likely to
particularly account for the extremely high EFd observed in
P6. In this season, organic fertilizers in the form of human
manure slurry from a locally typical indoor lagoon and soy-
bean cake were incorporated into the soils prior to the sowing
of amaranth seeds. This was different from what took place in
P9 and P13, in which a mineral fertilizer and organic manure
in the form of rapeseed cake were basally applied. Before the
human manure slurry was applied to the fields, it was stored
for at least several months in an indoor lagoon, where
ammonium from the hydrolysis of the urea in urine and the
mineralization of organic excreta might have been well
maintained in a water‐saturated environment, and DOC from
the decomposition of organic matter might also have accu-
mulated. The manure slurry removed from the indoor lagoon
was further diluted with water before it was applied. When the
water‐saturated manure slurry was basally applied, intensive
denitrification might have occurred in the bare soils and could
have resulted in intensive production of N2O. Our simulta-
neous measurements of nitrate and DOC levels (Figures 1b
and 1c) showed DOC‐to‐nitrate molar ratios of approxi-
mately four in P4 and P6. These ratios indicate that there was
no limitation of the available carbon substrates upon denitri-
fication, provided that this microbial process required 5 mol of
DOC to reduce 4 mol of nitrate [Swerts et al., 1996; Ingwersen
et al., 1999]. The application of lagoon‐stored organic slurry
in the amaranth season might have resulted in more intensive
denitrification in the early period and, thus, induced a much
higher seasonal fertilizer N‐loss rate via N2O emissions
compared with the radish season (Table 2), even though
soybean cake was basally applied in both P4 and P6; the
DOC‐to‐nitrate molar ratios and soil moistures were similar
during the time with the most intensive N2O emissions;
and the early temperature was much lower in P6 than P4
(Figure 4). The stimulatory effect of lagoon‐originated
manure slurry on N2O emissions can probably be attributed to
three causes. First, the population of denitrifiers was probably
increased by slurry application, as during storage, the organic
manure with saturated water content, rich available nitrogen
and labile carbon presented favorable conditions for the growth
of anaerobic microbes [e.g., Swerts et al., 1996]. Second, the
N2O:N2 ratios of denitrification products were likely increased
because this process occurred in aerobic soil during incomplete
anaerobic conditions that were favorable for immediate pro-
duction [e.g., Poth and Focht, 1985]. Ultimately, nitrification
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was likely stimulated by the addition of ammonium‐rich
manure slurry, which produced N2O by itself while further
stimulating N2O production through subsequent denitrifica-
tion [e.g., Williams et al., 1992]. In the present study P6 was
the only case in which lagoon‐stored manure slurry was
added. This most likely accounted for the fact that both the
seasonal total amount and direct factor of N2O emissions in
this season greatly deviated from the regression curves
illustrated in Figure 3. The above results likely indicate “hot
spot” agricultural sources of N2O emissions in circumstances
in which lagoon‐stored manure slurry is applied. However,
further study is required to address this issue because it has
been very poorly investigated to date.
4.2.3. Mitigation Options for N2O Emissions
[35] Regarding the typical and conventional vegetable

fields investigated in this study, the discussion above shows
that temperature, supplies of nitrogen and carbon substrates,
soil moisture and microbial activities appeared to be the
key factors that regulated not only the total amounts, but
also the direct factors related to seasonal N2O emissions.
Whenever nitrogen availability, labile carbon supplies, soil
moisture and the population of denitrifiers were simulta-
neously at high levels in nonwinter seasons, explosive N2O
emissions from the conventional vegetable fields could
alone induce fertilizer nitrogen losses at rates of a few
percent to much more than ten percent. Otherwise, tem-
perature became the overwhelming inhibitor in winter, while
the quantity of available nitrogen became the dominant
regulator in nonwinter seasons. Based on our results, certain
practices are expected to decrease denitrification and, thus,
to mitigate N2O emissions from conventional open vegeta-
ble fields. These are (1) reducing basal N addition rates
while only using organic slurry in dry and cool seasons,
(2) splitting N addition and watering and avoiding N appli-
cation before heavy rainfall or irrigation, and (3) splitting
single or double applications of N fertilizers into multiple
applications and distributing more fertilizer N in periods
with intensive vegetable plant uptake. However, the mitiga-
tion effects of these measures still require further testing in
future experiments.

4.3. Effects of Mineral Nitrogen on NO Plus
N2O Emissions

[36] The slopes and intercepts of the linear regression for
the logarithms of NO plus N2O mass fluxes against the
logarithms of extractable inorganic nitrogen levels (Figure 5)
were within the ranges observed for other terrestrial ecosys-
tems excluding rice paddy‐based croplands [Davidson and
Verchot, 2000]. Compared with the nonrice period of a fer-
tilized rice‐wheat rotation ecosystem located at another field
site with a silt clay soil in the same delta region [adapted from
Yao et al., 2010], the slope observed in our fertilized vege-
table plots was larger (0.68 versus 0.41 on average), but the
intercept was smaller (0.32 versus 1.36 on average). How-
ever, both parameters of our unfertilized vegetable plots were
very similar to those (adapted from Yao et al. [2010])
observed in the nonrice period of a fertilized rice‐wheat
rotation field with the same sandy loam soil that was located
beside our experimental fields (0.59 versus 0.69 on average
for slopes and −0.02 versus −0.03 on average for intercepts).
These results indicate that large differences in soil properties
may lead to different parameter values for the “hole‐in‐the‐

pipe” model. However, the factors determining the para-
meters remain unclear. Further investigation is still needed
to address this issue.

4.4. Regulatory Effects of Soil Moisture on NO
to N2O Ratios

[37] The significant relationships shown in Figure 6 log-
ically indicate that increasing amounts of N2O emissions
could be attributed to microbial denitrification with increas-
ing soil moisture. Though the slopes (−3.13 to −2.68) and
intercepts (1.13 to 0.59) of the linear regressions varied
between the two fertilization treatments, the ranges of both
parameters were much narrower compared with those found
for the nonrice (nonwaterlogged) periods of different rice‐
wheat rotation field sites in the Yangtze River delta (adapted
from Yao et al. [2010]), which exhibited slopes of −6.11 to
−1.84 (mean: −3.17) and intercepts of 0.84 to 4.70 (mean:
1.93). In comparison with the values of these parameters
determined for global major terrestrial ecosystems excluding
paddy rice fields (slope: −6.14 to −0.93, with a mean of
−3.97; intercept: 0.64 to 3.82, with a mean of 2.73) reported
byDavidson and Verchot [2000], those of our vegetable field
and the nonwaterlogged rice‐wheat fields mentioned above
showed similar CVs (51% versus 79% for slopes and 98%
versus 70% for intercepts). The relationships between the
logarithms of the NO to N2O ratios and soil moisture have
ever been assumed to be applicable for global inventory
studies on the emissions of these two gases from terrestrial
ecosystems [Davidson and Verchot, 2000]. However, the
parameters measured in this study, as well as those reported
in the literature, appear to be specific for ecosystem types,
soil properties, or management practices. In fact, factors
determining the parameters have not been well investigated.
This situation continues to limit the applicability of such
empirical models to global or regional inventory studies.
Understandably, further investigation is needed to identify
key factors determining the relationships between the NO to
N2O ratios and soil moisture.

5. Conclusions

[38] Nitrous oxide (N2O) emission from typical vegetable
fields subject to conventional management practices were mea-
sured over a 4 year period spanning 1,475 days. Peak releases
following nitrogen addition overwhelmingly accounted for
the annual cumulative N2O emissions and the total emissions
of individual vegetable growing seasons. Temperature,
availability of nitrogen and carbon substrates, soil moisture
and microbial activity stimulated by organic slurry applica-
tion appeared to be the key factors that regulated not only the
total amounts of but also the direct factors related to seasonal
N2O emissions. Whenever these factors were simultaneously
at high levels, explosive N2O emissions, alone, could induce
fertilizer nitrogen losses in individual vegetable seasons
at rates of a few percent to much more than ten percent.
Otherwise, temperature was the overwhelming inhibitory
factor in winter‐crop seasons, while the quantity of available
nitrogen became the dominant regulator in nonwinter sea-
sons. Direct N2O emissions factors varied from 0.06 to
14.2% among individual crop‐growing seasons and varied
annually from 0.59 to 4.98%, with a mean of 2.88% (and
an interannual CV of 74%), which was much higher than
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the default value of the IPCC guidelines. Using emission
factors obtained from short‐term measurements is expected
to yield large uncertainties in the inventory of N2O emissions
from open vegetable fields. To reduce the current uncer-
tainties in annual direct emissions factors, increasing the
number of spatial replicates in multiple‐year measurements
is recommended as a priority when the temporal resolution
used this study is adopted. The results of this study suggest
some potential practices for decreasing denitrification and,
thus, mitigating N2O emissions from conventional open
vegetable fields, which are (1) reducing basal N addition
rates, while only using organic slurry in dry and cool seasons,
(2) splitting N addition and watering and avoiding N appli-
cation before heavy rainfall or irrigation, and (3) splitting
single or double applications of N fertilizers into multiple
applications, while distributing more fertilizer N in winter
crop seasons or in nonwinter periods with intensive veget-
able plant uptake. However, the mitigation effects of these
options still require further testing in future experiments.
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