124 research outputs found

    10 kHz repetition rate picosecond green laser for high-accuracy satellite ranging

    Get PDF
    Picosecond pulse laser is the main light source for satellite laser ranging. In this paper, a 10 kHz repetition rate picosecond green laser with an average output power of 5.3 W is demonstrated. The laser generates a pulse width of 18.6 ps at a center wavelength of 532.20 nm with a spectral width of .066 nm. The beam quality is well preserved with M2 of 1.1 with the beam divergence measured to be .62 mrad and pointing stability of 7 μrad over 30 min of operation. The laser system was then applied to measure the BeiDou satellite (Compass-I3) and generated a single range accuracy of 3.2 mm, which is the highest reported range accuracy for synchronous orbit satellite laser ranging

    FOXD1 Promotes Cell Growth and Metastasis by Activation of Vimentin in NSCLC

    Get PDF
    Background/Aims: Forkhead box D1 (FOXD1) has a well-established role in early embryonic development and organogenesis and functions as an oncogene in several cancers. However, the clinical significance and biological roles of FOXD1 in non-small cell lung cancer (NSCLC) remain largely unknown. Methods: A total of 264 primary NSCLC tissue samples were collected. The expression levels of FOXD1 in these samples were examined by immunohistochemical staining. The expression of FOXD1 was knocked down by lentiviral shRNA. The relative expression of FOXD1 was determined by qRT-PCR, Western blotting and immunofluorescence image. The functional roles of FOXD1 in NSCLC were demonstrated cell viability CCK-8 assay, colony formation, cell invasion and migration assays, and cell apoptosis assay in vitro. In vivo mouse xenograft and metastasis models were used to assess tumorigenicity and metastatic ability. The Chi-square test was used to assess the correlation between FOXD1 expression and the clinicopathological characteristics. Survival curves were estimated by Kaplan-Meier method and compared using the log-rank test. The Cox proportional hazards model was used for univariate and multivariate analyses. Results: We determined that higher levels of FOXD1 were present in NSCLC tissues, especially in metastatic NSCLC tissues. FOXD1 was also higher in all NSCLC cells compared with normal human bronchial epithelial cells. A higher expression level of FOXD1 was associated with malignant behavior and poor prognosis in NSCLC patients. Knockdown of FOXD1 significantly inhibited proliferation, migration, and invasion in vitro and tumor growth and metastasis in vivo, and it increased the apoptosis rates of NSCLC cells. Mechanistic analyses revealed that FOXD1 expressed its oncogenic characteristics through activating Vimentin in NSCLC. Multivariate Cox regression analysis indicated that FOXD1 was an independent prognostic factor both for overall survival (OS) and disease-free survival (DFS) in NSCLC patients. Conclusion: Our results indicated that FOXD1 might be involved in the development and progression of NSCLC as an oncogene, and thereby might be a potential therapeutic target for NSCLC patients

    Introgression of Powdery Mildew Resistance Gene Pm56 on Rye Chromosome Arm 6RS Into Wheat

    Get PDF
    Powdery mildew, caused by the fungus Blumeria graminis f. sp. tritici, represents a yield constraint in many parts of the world. Here, the introduction of a resistance gene carried by the cereal rye cv. Qinling chromosome 6R was transferred into wheat in the form of spontaneous balanced translocation induced in plants doubly monosomic for chromosomes 6R and 6A. The translocation, along with other structural variants, was detected using in situ hybridization and genetic markers. The differential disease response of plants harboring various fragments of 6R indicated that a powdery mildew resistance gene(s) was present on both arms of rye chromosome 6R. Based on karyotyping, the short arm gene, designated Pm56, was mapped to the subtelomere region of the arm. The Robertsonian translocation 6AL⋅6RS can be exploited by wheat breeders as a novel resistance resource

    Short-term dietary choline supplementation alters the gut microbiota and liver metabolism of finishing pigs

    Get PDF
    Choline is an essential nutrient for pig development and plays a role in the animal's growth performance, carcass characteristics, and reproduction aspects in weaned pigs and sows. However, the effect of choline on finishing pigs and its potential regulatory mechanism remains unclear. Here, we feed finishing pigs with 1% of the hydrochloride salt of choline, such as choline chloride (CHC), under a basic diet condition for a short period of time (14 days). A 14-day supplementation of CHC significantly increased final weight and carcass weight while having no effect on carcass length, average backfat, or eye muscle area compared with control pigs. Mechanically, CHC resulted in a significant alteration of gut microbiota composition in finishing pigs and a remarkably increased relative abundance of bacteria contributing to growth performance and health, including Prevotella, Ruminococcaceae, and Eubacterium. In addition, untargeted metabolomics analysis identified 84 differently abundant metabolites in the liver between CHC pigs and control pigs, of which most metabolites were mainly enriched in signaling pathways related to the improvement of growth, development, and health. Notably, there was no significant difference in the ability of oxidative stress resistance between the two groups, although increased bacteria and metabolites keeping balance in reactive oxygen species showed in finishing pigs after CHC supplementation. Taken together, our results suggest that a short-term supplementation of CHC contributes to increased body weight gain and carcass weight of finishing pigs, which may be involved in the regulation of gut microbiota and alterations of liver metabolism, providing new insights into the potential of choline-mediated gut microbiota/metabolites in improving growth performance, carcass characteristics, and health

    Laminar flame characteristics of natural gas and dissociated methanol mixtures diluted by nitrogen

    Get PDF
    The effect of dissociated methanol (H2:CO=2:1 by volume) on laminar burning velocity of natural gas (methane as the main component) was studied by using a constant volume bomb (CVB). Nitrogen, as diluent gas, was added into the natural gas (CH4) - dissociated methanol (DM) mixtures to investigate the dilution effect. Experiments were conducted at initial temperature of 343 K and initial pressure of 0.3 MPa with equivalence ratios from 0.8 to 1.4. Laminar burning velocities were calculated through Schlieren photographs, correlation of in-cylinder pressure data and Chemkin-Pro. Results show an increase in laminar burning velocity with initial temperature and proportion of dissociated methanol but a decrease with initial pressure and proportion of nitrogen. The laminar burning velocities were 25.1 cm/s, 38.7 cm/s and 83.2 cm/s respectively at stoichiometric ratio when the proportions of the dissociated methanol were 0%, 40% and 80%. Adding more dissociated methanol tends to shift the peak burning velocity towards the richer side while adding nitrogen has the opposite effect. More dissociated methanol will lead to earlier cellularity

    Effects of dietary L-Citrulline supplementation on growth performance, meat quality, and fecal microbial composition in finishing pigs

    Get PDF
    Gut microbiota play an important role in the gut ecology and development of pigs, which is always regulated by nutrients. This study investigated the effect of L-Citrulline on growth performance, carcass characteristics, and its potential regulatory mechanism. The results showed that 1% dietary L-Citrulline supplementation for 52 days significantly increased final weight, liveweight gain, carcass weight, and average backfat and markedly decreased drip loss (p < 0.05) of finishing pigs compared with the control group. Microbial analysis of fecal samples revealed a marked increase in α-diversity and significantly altered composition of gut microbiota in finishing pigs in response to L-Citrulline. In particular, these altered gut microbiota at the phylum and genus level may be mainly involved in the metabolic process of carbohydrate, energy, and amino acid, and exhibited a significant association with final weight, carcass weight, and backfat thickness. Taken together, our data revealed the potential role of L-Citrulline in the modulation of growth performance, carcass characteristics, and the meat quality of finishing pigs, which is most likely associated with gut microbiota

    Diverse Applications of Nanomedicine

    Get PDF
    The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic. \ua9 2017 American Chemical Society

    Roadmap on data-centric materials science

    Get PDF
    Science is and always has been based on data, but the terms ‘data-centric’ and the ‘4th paradigm’ of materials research indicate a radical change in how information is retrieved, handled and research is performed. It signifies a transformative shift towards managing vast data collections, digital repositories, and innovative data analytics methods. The integration of artificial intelligence and its subset machine learning, has become pivotal in addressing all these challenges. This Roadmap on Data-Centric Materials Science explores fundamental concepts and methodologies, illustrating diverse applications in electronic-structure theory, soft matter theory, microstructure research, and experimental techniques like photoemission, atom probe tomography, and electron microscopy. While the roadmap delves into specific areas within the broad interdisciplinary field of materials science, the provided examples elucidate key concepts applicable to a wider range of topics. The discussed instances offer insights into addressing the multifaceted challenges encountered in contemporary materials research

    Applying aspiration in local search for satisfiability.

    No full text
    The Boolean Satisfiability problem (SAT) is a prototypical NP-complete problem, which has been widely studied due to its significant importance in both theory and applications. Stochastic local search (SLS) algorithms are among the most efficient approximate methods available for solving certain types of SAT instances. The quantitative configuration checking (QCC) heuristic is an effective approach for improving SLS algorithms on solving the SAT problem, resulting in an efficient SLS solver for SAT named Swqcc. In this paper, we focus on combining the QCC heuristic with an aspiration mechanism, and then design a new heuristic called QCCA. On the top of Swqcc, we utilize the QCCA heuristic to develop a new SLS solver dubbed AspiSAT. Through extensive experiments, the results illustrate that, on random 3-SAT instances, the performance of AspiSAT is much better than that of Swqcc and Sparrow, which is an influential and efficient SLS solver for SAT. In addition, we further enhance the original clause weighting schemes employed in Swqcc and AspiSAT, and thus obtain two new SLS solvers called Ptwqcc and AspiPT, respectively. The eperimental results present that both Ptwqcc and AspiPT outperform Swqcc and AspiSAT on random 5-SAT instances, indicating that both QCC and QCCA heuristics are able to cooperate effectively with different clause weighting schemes

    Agent-based Simulation Framework for Safety Critical System

    No full text
    corecore