58 research outputs found

    Effect of high-pressure torsion on structure and microhardness of ti/tib metal–matrix composite

    Get PDF
    Effect of high-pressure torsion (HPT) at 400 °C on microstructure and microhardness of a Ti/TiB metal–matrix composite was studied. The starting material was produced by spark plasma sintering of a mixture of a pure Ti and TiB2 (10 wt %) powders at 1000 °C. The microstructure evolution during HPT was associated with an increase in dislocation density and substructure development that resulted in a gradual microstructure refinement of the Ti matrix and shortening/redistribution of TiB whiskers. After five revolutions, a nanostructure with (sub) grain size of ~30 nm was produced in Ti matrix. The microhardness increased with strain attaining the value ~520 HV after five revolutions. The contribution of different hardening mechanisms into the hardness of the Ti/TiB metal–matrix composite was quantitatively analyzed

    Cross-kink unpinning controls the medium-to high-temperature strength of body-centered cubic NbTiZr medium-entropy alloy

    Get PDF
    The deformation mechanisms of a NbTiZr body-centered cubic (BCC) medium-entropy alloy (MEA) are investigated by tensile testing at various temperatures. The yield strength (YS) shows a strong temperature dependence from 77 K to 300 K, while being insensitive to temperatures between 300 K and 873 K, followed by a significant drop at 1073 K. TEM investigations show that the alloy deformation is controlled by screw-dislocation slip. Screw-dislocations with cross-kinks/jogs are frequently observed at all temperatures except at 1073 K. The deformed microstructure at 473 K reveals dislocations loops/debris indicating the dominance of cross-kink strengthening at moderate to high temperatures, leading to a temperature insensitive YS. The behavior of NbTiZr is consistent with the cross-kink strengthening mechanism, as also confirmed by the comparison between observed and predicted values of the activation volume. The TEM investigations at 1073 K are consistent with the annihilation of cross-kinks/edge dipoles, which can explain the observed strength drop above this temperature

    All-optical spatio-temporal control of electron emission from SiO2 nanospheres with femtosecond two-color laser fields

    Get PDF
    Field localization by nanostructures illuminated with laser pulses of well-defined waveform enables spatio-temporal tailoring of the near-fields for sub-cycle control of electron dynamics at the nanoscale. Here, we apply intense linearly-polarized two-color laser pulses for all-optical control of the highest energy electron emission from SiO2 nanoparticles. For the size regime where light propagation effects become important, we demonstrate the possibility to control the preferential emission angle of a considerable fraction of the fastest electrons by varying the relative phase of the two-color field. Trajectory based semi-classical simulations show that for the investigated nanoparticle size range the directional steering can be attributed to the two-color effect on the electron trajectories, while the accompanied modification of the spatial distribution of the ionization rate on the nanoparticle surface has only a minor effect

    Optical fine-needle aspiration biopsy in a rat model

    Get PDF
    Fine needle aspiration biopsy technique and following histological examination show its effectiveness and safety but its performing takes several time. However, the problem of real-time analysis of pathological changes in tissues remains relevant. We demonstrate optical fine-needle biopsy method, combining a fine needle (17.5G) and a fiber-optic probe (1 mm diameter) for minimally invasive interrogation of tissue in vivo. During rat tumor experiment, we collected spectrally-resolved diffuse reflectance and fluorescence. Quantified differences between tumor and normal tissues were demonstrated and approved with morphological analysis. The proposed methodology seems promising for developing new diagnostic criteria for clinical practice

    All-optical spatio-temporal control of electron emission from SiO2 nanospheres with femtosecond two-color laser fields

    Get PDF
    Field localization by nanostructures illuminated with laser pulses of well-defined waveform enables spatio-temporal tailoring of the near-fields for sub-cycle control of electron dynamics at the nanoscale. Here, we apply intense linearly-polarized two-color laser pulses for all-optical control of the highest energy electron emission from SiO2 nanoparticles. For the size regime where light propagation effects become important, we demonstrate the possibility to control the preferential emission angle of a considerable fraction of the fastest electrons by varying the relative phase of the two-color field. Trajectory based semi-classical simulations show that for the investigated nanoparticle size range the directional steering can be attributed to the two-color effect on the electron trajectories, while the accompanied modification of the spatial distribution of the ionization rate on the nanoparticle surface has only a minor effect.11Ysciescopu

    Brain metabolism changes in cases of impaired breathing or blood circulation in rodents evaluated by real time optical spectroscopy methods

    Get PDF
    The aim of the study was to compare the metabolic activity of brain cortex after the acute hypoxia caused by the impairment of breathing or blood circulation. Male Wistar rats were randomized in two groups: impaired breathing and blood circulation failure groups. Fluorescence under 365 and 450 nm excitation and diffuse reflectance intensity at 550-820 nm range were estimated. We found that after long-term hypoxic conditions, notable metabolic changes occur. We suppose that oxygen deficiency causes an activation of the GABA shunt mechanism. In cases of blood circulation failure, fluorescence intensity changes faster than in cases of breathing impairment

    Design of High-Entropy Alloys

    No full text
    High-entropy alloys (HEAs) and related complex, concentrated alloys (CCAs) have resulted from new approaches to alloy design, which emerged 18 years ago [...
    corecore