132 research outputs found
Deciphering the dynamics of inorganic carbon export from intertidal salt marshes using high-frequency measurements
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Chemistry 206 (2018): 7-18, doi:10.1016/j.marchem.2018.08.005.The lateral export of carbon from coastal marshes via tidal exchange is a key component of the marsh carbon budget and coastal carbon cycles. However, the magnitude of this export has been difficult to accurately quantify due to complex tidal dynamics and seasonal cycling of carbon. In this study, we use in situ, high-frequency measurements of dissolved inorganic carbon (DIC) and water fluxes to estimate lateral DIC fluxes from a U.S. northeastern salt marsh. DIC was measured by a CHANnelized Optical Sensor (CHANOS) that provided an in situ concentration measurement at 15-min intervals, during periods in summer (July â August) and late fall (December). Seasonal changes in the marsh had strong effects on DIC concentrations, while tidally-driven water fluxes were the fundamental vehicle of marsh carbon export. Episodic events, such as groundwater discharge and mean sea water level changes, can impact DIC flux through altered DIC concentrations and water flow. Variability between individual tides within each season was comparable to mean variability between the two seasons. Estimated mean DIC fluxes based on a multiple linear regression (MLR) model of DIC concentrations and high-frequency water fluxes agreed reasonably well with those derived from CHANOS DIC measurements for both study periods, indicating that high-frequency, modeled DIC concentrations, coupled with continuous water flux measurements and a hydrodynamic model, provide a robust estimate of DIC flux. Additionally, an analysis of sampling strategies revealed that DIC fluxes calculated using conventional sampling frequencies (hourly to two-hourly) of a single tidal cycle are unlikely to capture a representative mean DIC flux compared to longer-term measurements across multiple tidal cycles with sampling frequency on the order of tens of minutes. This results from a disproportionately large amount of the net DIC flux occurring over a small number of tidal cycles, while most tides have a near-zero DIC export. Thus, high-frequency measurements (on the order of tens of minutes or better) over the time period of interest are necessary to accurately quantify tidal exports of carbon species from salt marshes.This work was funded by NSF Graduate Research Fellowship Program, NSF Ocean Sciences Postdoctoral Fellowship (OCE-1323728), Link FoundationOcean Engineering and Instrumentation Fellowship, National Institute of Science and Technology (NIST no. 60NANB10D024), the USGS LandCarbon and Coastal & Marine Geology Programs, NSF Chemical Oceanography Program (OCE-1459521), NSF Ocean Technology and Interdisciplinary Coordination program (OCE-1233654) and NOAA Science Collaborative (NA09NOS4190153)
Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 61 (2016): 1916â1931, doi:10.1002/lno.10347.Dynamic tidal export of dissolved inorganic carbon (DIC) to the coastal ocean from highly productive intertidal marshes and its effects on seawater carbonate chemistry are thoroughly evaluated. The study uses a comprehensive approach by combining tidal water sampling of CO2 parameters across seasons, continuous in situ measurements of biogeochemically-relevant parameters and water fluxes, with high-resolution modeling in an intertidal salt marsh of the U.S. northeast region. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and total alkalinity (TA). DIC and TA generation may also be decoupled due to differential effects of marsh aerobic and anaerobic respiration on DIC and TA. As marsh DIC is added to tidal water, the buffering capacity first decreases to a minimum and then increases quickly. Large additions of marsh DIC can result in higher buffering capacity in ebbing tide than incoming tide. Alkalization of tidal water, which mostly occurs in the summer due to anaerobic respiration, can further modify buffering capacity. Marsh exports of DIC and alkalinity may have complex implications for the future, more acidified ocean. Marsh DIC export exhibits high variability over tidal and seasonal cycles, which is modulated by both marsh DIC generation and by water fluxes. The marsh DIC export of 414 g C mâ2 yrâ1, based on high-resolution measurements and modeling, is more than twice the previous estimates. It is a major term in the marsh carbon budget and translates to one of the largest carbon fluxes along the U.S. East Coast.USGS Coastal & Marine Geology Program;
U.S. National Science Foundation Grant Number: OCE-1459521;
NOAA Science Collaborative Grant Number: NA09NOS4190153;
USGS LandCarbon Progra
Changes in anthropogenic carbon storage in the Northeast Pacific in the last decade
Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 4618â4632, doi:10.1002/2016JC011775.In order to understand the ocean's role as a sink for anthropogenic carbon dioxide (CO2), it is important to quantify changes in the amount of anthropogenic CO2 stored in the ocean interior over time. From August to September 2012, an ocean acidification cruise was conducted along a portion of the P17N transect (50°N 150°W to 33.5°N 135°W) in the Northeast Pacific. These measurements are compared with data from the previous occupation of this transect in 2001 to estimate the change in the anthropogenic CO2 inventory in the Northeast Pacific using an extended multiple linear regression (eMLR) approach. Maximum increases in the surface waters were 11 ”mol kgâ1 over 11 years near 50°N. Here, the penetration depth of anthropogenic CO2 only reached âŒ300 m depth, whereas at 33.5°N, penetration depth reached âŒ600 m. The average increase of the depth-integrated anthropogenic carbon inventory was 0.41â±â0.12 mol mâ2 yrâ1 across the transect. Lower values down to 0.20 mol mâ2 yrâ1 were observed in the northern part of the transect near 50°N and increased up to 0.55 mol mâ2 yrâ1 toward 33.5°N. This increase in anthropogenic carbon in the upper ocean resulted in an average pH decrease of 0.002â±â0.0003 pH units yrâ1 and a 1.8â±â0.4 m yrâ1 shoaling rate of the aragonite saturation horizon. An average increase in apparent oxygen utilization of 13.4â±â15.5 ”mol kgâ1 centered on isopycnal surface 26.6 kg mâ3 from 2001 to 2012 was also observed.National Science Foundation Ocean Acidification Program Grant Number: OCE-1041068;
National Institute of Standards and Technology Grant Number: (NIST-60NANB10D024);
National Science Foundation Graduate Research Fellowship Program2017-01-0
The Effects of Scleral Collagen Cross-Linking Using Glyceraldehyde on the Progression of Form-Deprived Myopia in Guinea Pigs
To investigate the effects of collagen cross-linking using glyceraldehyde on the biomechanical properties of the sclera and the axial elongation of form-deprived myopia in the guinea pig. Thirty-six guinea pigs were randomly assigned to four groups: FDM (form-deprived myopia); FDMG (form-deprived myopia treated with glyceraldehyde); FDMS (form-deprived myopia treated with 0.9% isotonic sodium chloride); and normal control (free of form-deprivation). FDM was achieved in the right eye using a latex facemask. The right eye in FDMG was treated with a posterior subtenon injection of 0.5âM glyceraldehyde; 0.9% isotonic sodium chloride was administered to the right eye in FDMS group using the same method. Axial length, refraction, and stress-strain of the sclera were measured at scheduled time points. The treated eyes were also examined histologically by light microscopy. It was found that glyceraldehyde treatment significantly increased the stiffness of the sclera in the FDM eyes and abnormalities have not been observed in the retina and optic nerve of the treated eyes. But the development of myopia was not affected
Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces
Predicting thermal radiation for oxy-coal combustion highlights the importance of the radiation models for the spectral properties of gases and particles. This study numerically investigates radiation behaviours in small and large scale furnaces through refined radiative property models, using the full-spectrum correlated k (FSCK) model and Mie theory based data, compared with the conventional use of the weighted sum of grey gases (WSGG) model and the constant values of the particle radiation properties. Both oxy-coal combustion and air-fired combustion have been investigated numerically and compared with combustion plant experimental data. Reasonable agreements are obtained between the predicted results and the measured data. Employing the refined radiative property models achieves closer predicted heat transfer properties to the measured data from both furnaces. The gas-phase component of the radiation energy source term obtained from the FSCK property model is higher within the flame region than the values obtained by using the conventional methods. The impact of using non-grey radiation behaviour of gases through the FSCK is enhanced in the large scale furnace as the predicted gas radiation source term is approximately 2-3 times that obtained when using the WSGG, while the same term is in much closer agreement between the FSCK and the WSGG for the pilot-scale furnace. The predicted total radiation source term (from both gases and particles) is lower in the flame region after using the refined models, which results in a hotter flame (approximately 50-150 K higher in this study) compared with results obtained from conventional methods. In addition, the predicted surface incident radiation reduces by using the refined radiative property models for both furnaces, in which the difference is relevant with the difference in the predicted radiation properties between the two modelling techniques. Numerical uncertainties resulting from the influences of combustion model, turbulent particle dispersion and turbulence modelling on the radiation behaviours are discussed
Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial
Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18â85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25â75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300â5000 mg/g who had received maximum labelled or tolerated reninâangiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for â„30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for â„90 days, chronic dialysis for â„90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4â2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49â0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85â2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75â1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie
- âŠ