70 research outputs found

    Bulk compositions of the Chang’E-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts

    Get PDF
    Lunar soil is a fine mixture of local rocks and exotic components. The bulk-rock chemical composition of the newly returned Chang’E-5 (CE-5) lunar soil was studied to understand its chemical homogeneity, exotic additions, and origin of landing site basalts. Concentrations of 48 major and trace elements, including many low-concentration volatile and siderophile elements, of two batches of the scooped CE-5 soil samples were simultaneously obtained by inductively coupled plasma mass spectrometry (ICP-MS) with minimal sample consumption. Their major and trace elemental compositions (except for Ni) are uniform at milligram levels (2–4 mg), matching measured compositions of basaltic glasses and estimates based on mineral modal abundances of basaltic fragments. This result indicates that the exotic highland and KREEP (K, rare earth elements, and P-rich) materials are very low (<5%) and the bulk chemical composition (except for Ni) of the CE-5 soil can be used to represent the underlying mare basalt. The elevated Ni concentrations reflect the addition of about 1 wt% meteoritic materials, which would not influence the other bulk composition except for some highly siderophile trace elements such as Ir. The CE-5 soil, which is overall the same as the underlying basalt in composition, displays low Mg# (34), high FeO (22.7 wt%), intermediate TiO2 (5.12 wt%), and high Th (5.14 µg/g) concentrations. The composition is distinct from basalts and soils returned by the Apollo and Luna missions, however, the depletion of volatile or siderophile elements such as K, Rb, Mo, and W in their mantle sources is comparable. The incompatible lithophile trace element concentrations (e.g., Ba, Rb, Th, U, Nb, Ta, Zr, Hf, and REE) of the CE-5 basalts are moderately high and their pattern mimics high-K KREEP. The pattern of these trace elements with K, Th, U, Nb, and Ta anomalies of the CE-5 basalts cannot be explained by the partial melting and crystallization of olivine, pyroxene, and plagioclase. Thus, the mantle source of the CE-5 landing site mare basalt could have contained KREEP components, likely as trapped interstitial melts. To reconcile these observations with the initial unradiogenic Sr and radiogenic Nd isotopic compositions of the CE-5 basalts, clinopyroxene characterized by low Rb/Sr and high Sm/Nd ratios could be one of the main minerals in the KREEP-bearing mantle source. Consequently, we propose that the CE-5 landing site mare basalts very likely originated from partial melting of a shallow and clinopyroxene-rich (relative to olivine and orthopyroxene) upper mantle cumulate with a small fraction (about 1–1.5 %) of KREEP-like materials

    Controls on modern erosion and the development of the Pearl River drainage in the late Paleogene

    Get PDF
    The Pearl River and its tributaries drains large areas of southern China and has been the primary source of sediment to the northern continental margin of the South China Sea since its opening. In this study we use a combination of bulk sediment geochemistry, Nd and Sr isotope geochemistry, and single grain zircon U-Pb dating to understand the source of sediment in the modern drainage. We also performed zircon U-Pb dating on Eocene sedimentary rocks sampled by International Ocean Discovery Program (IODP) Expedition 349 in order to constrain the source of sediment to the rift before the Oligocene. A combination of Nd and Sr isotopes shows that the Gui, Liu and Dong Rivers are likely not important sources. Single grain zircon dates emphasize the importance of the westernmost tributaries (Hongshui and Yu Rivers), which drain the highest topography and tectonically active areas, as the primary sediment producers. Our data indicate that climate is not the primary control on erosion patterns and intensities. Zircon dating also shows that the Gui and Liu Rivers are not generating large sediment yields. Discrepancies between these new data and earlier samples make the role of the Dong River hard to determine, although Nd isotopes suggest that it is not dominant. The source of sediment during the Eocene at IODP Site U1435 appears to have been a relatively local basement source, or a regionally restricted river only draining nearby areas of the Cathaysia Block, similar, but not identical, to the modern Dong River. There is no evidence for a large regional river and we exclude sediment transport from the southwest (Indochina). Our data are consistent with small drainage systems dominating the basin until the end of the Oligocene (~ 24 Ma), after which the Pearl River expanded towards its modern state as a result of headwater capture largely towards the west

    Direct determination of Si isotope ratios in natural waters and commercial Si standards by ion exclusion chromatography multi-collector inductively coupled plasma mass spectrometry

    No full text
    Silicon isotope ratios in natural waters and several commercial Si standards were determined by on-line ion exclusion chromatography (IEC) multicollector inductively couple plasma mass spectrometry (MC-ICPMS). As recent studies have shown that mass-independent fractionation (MIF) also exists in MC-ICPMS itself, e.g., Nd, Ce, W, Sr, Ge, Hg and Pb isotopes, the nature of mass bias for Si isotopes was thus investigated. MIF was observed for Si isotopes on both Neptune and Neptune plus MC-ICPMS instruments in this study. Therefore, a standard-sample-standard bracketing (SSB) mass bias correction model which is capable of correcting both mass-dependent and mass-independent bias was employed to obtain accurate Si isotope ratio results in all samples by using NBS28 Si standard as the bracketing standard. Medium resolution was used for all measurements in order to resolve polyatomic interferences on Si isotopes. NBS28 Si standard solutions prepared in nutrient-free seawater and 0.1% NaOH matrix, respectively, were used for the method validation and subjected to the on-line IEC-MC-ICPMS determination ofSi isotope ratios. Values of -0.01\ub10.06 and 0.00\ub10.06 %o (lSD, n=IO); and -0.01\ub10.03 and 0.01\ub10.06 %o (lSD, n=IO) for J29128 Si and J30128 Si, respectively, were obtained, confirming accurate results can be obtained using the proposed method for natural waters.Peer reviewed: YesNRC publication: Ye

    Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios

    Get PDF
    AbstractLA-ICP-MS and LA-MC-ICP-MS have been the techniques of choice for achieving accurate and precise element content and isotopic ratio, the state-of-the-art technique combines the advantages of low detection limits with high spatial resolution, however, the analysis accuracy and precision are restricted by many factors, such as sensitivity drift, elemental/isotopic fractionation, matrix effects, interferences and the lack of sufficiently matrix-matched reference materials. Thus, rigorous and suitable calibration and correction methods are needed to obtain quantitative data. This review systematically summarized and evaluated the interference correction, quantitative calculation and sensitivity correction strategies in order to provide the analysts with suitable calibration and correction strategies according to the sample types and the analyzed elements. The functions and features of data reduction software ICPMSDataCal were also outlined, which can provide real-time and on-line data reduction of element content and isotopic ratios analyzed by LA-ICP-MS and LA-MC-ICP-MS

    Platinum group element abundances in the upper continental crust revisited - New constraints from analyses of Chinese loess

    No full text
    Platinum group element (PGE) abundances in the upper continental crust (UCC) are poorly constrained with published values varying by up to an order of magnitude. We evaluated the validity of using loess to estimate PGE abundances in the UCC by measuring these elements in seven Chinese loess samples using a precise method that combines NiS fire assay with isotope dilution. Major and trace elements of the Chinese loess show a typical upper crustal composition and PGE abundances are consistent with literature data on Chinese loess, except for Ru, which is a factor of 10 lower than published values. We suggest that the high Ru data and RuN/IrN values of Chinese loess reported by Peucker-Ehrenbrink and Jahn (2001) (Geochem. Geophys. Geosys. 2, 2001GC000172) are an analytical artifact, rather than a true geochemical characteristic of loess because likely sources of loess are not significantly enriched in Ru and transport and deposition processes cannot preferentially enrich Ru in loess. The effect of eolian fractionation on PGE abundances in loess appears to be limited because Chinese loess from different locations shows similar PGE patterns and concentrations. This conclusion is supported by strong positive correlations between the PGE (except for Pt) and other compatible elements such as Fe2O3, Ni, Cr, Co. Using a compilation of PGE data for loess from China, Argentina and Europe, including our data but excluding one sample with an anomalously high Pt content, we propose average PGE abundances for global loess of Ir = 0.022 ppb (ng/g), Ru = 0.030 ppb, Rh = 0.018 ppb, Pt = 0.599 ppb, and Pd = 0.526 ppb, and suggest that these are the best current estimates for the PGE abundances of the UCC

    Determination of boron isotope compositions of geological materials by laser ablation MC-ICP-MS using newly designed high sensitivity skimmer and sample cones

    No full text
    The effects of addition of nitrogen gas with use of three different combinations of sample and skimmer cones on the performance of LA-MC-ICP-MS for in situ B isotope ratio measurements were investigated in detail. Compared to the standard arrangement (H skimmer cone+standard sample cone), sensitivities of B isotopes were improved by a factor of 2.4 and 3.8 with use of X skimmer cone+standard sampler cone and the X skimmer cone+Jet sample cone, respectively. The best within-run precision (2s) of 11B/10B was approximately 50ppm for B4 reference material (B content=31,400\u3bcg/g) with use of X skimmer cone+Jet sample cone. It was found that different cone combinations had significant effects on the instrument mass bias, but had little effect on the precisions of B isotope ratios. Addition of nitrogen (2-4ml/min) in the central channel gas did not improve the sensitivity of B. However, significant wider ion axial distribution profile and more stable mass-bias for B isotope ratios were evident. Under selected optimum conditions, good agreements between the measured \u3b411B values and the reference values were obtained for the international reference minerals (B4, Dravite, Elbaite, IMMRB1 and Schorl), the NIST SRM 610-612 synthetic soda-lime glasses and the MPI-DING glasses (GOR-128-G, GOR-132-G, and StHs6/80). It was found that for low-B containing (11ppm and 31ppm) materials, the precisions (2s) of 11B/10B can be improved by a factor of 2-10 by using the newly designed X-skimmer cone and Jet sample cone, compared to that of using the standard cones. The international reference mineral Danburite (\u3b411B of -14.92\ub16.77 2SD, n=32) showed a significant non-uniformity of B isotope ratio distribution. Our first boron isotopic results from standards GSD-1G (\u3b411B: 11.92\ub11.03, n=30), GSE-1G (\u3b411B: 1.63\ub10.32, n=30), GP-4 (\u3b411B: -5.85\ub11.01, n=40) and DD-1 (\u3b411B: -13.21\ub10.56, n=35) showed these materials were fairly homogeneous in boron isotope ratios, making them as good candidates as reference materials. The proposed LA-MC-ICPMS method is suitable for the direct determination of B isotope ratio in a variety of geological materials.Peer reviewed: YesNRC publication: Ye

    Magma Recharge and Reactive Bulk Assimilation in Enclave-Bearing Granitoids, Tonglu, South China

    No full text
    Magmatic processes leading to granitoid formation are of relevance to the evolution of continental crust and its mineralization. A comprehensive study of field observations with whole-rock and in situ mineral chemical and isotopic compositions was carried out on granitoids, mafic microgranular enclaves (MME) and country-rock xenoliths (CRX) from Tonglu, South China to constrain the magmatic processes operating. Zircon U-Pb geochronology indicates that the MME and granitoids formed coevally at similar to 130 Ma. Petrographic observations suggest that the MME are quenched mafic clots formed during incomplete magma mixing. The different zircon Hf isotopic compositions of the MME (eHf(t) 1/4 -4.0 to -0.7) and the host granitoids (epsilon(Hf)(t) = -8.1 to -1.7) indicate mingling between mafic and felsic magmas from different sources. The CRX are composed of fresh cores and dark rims. The pyroxene-rich fresh cores are depleted in Rb, Ba and K while the biotite-rich dark rims show obvious enrichments in Rb, Ba and K, indicating modification by hydrous K-rich felsic melts or fluids from the host magma. In contrast, some large CRX have embayed structures and are surrounded by several small, biotite-rich CRX, suggesting disaggregation and modification of large CRX into the host magma. The occurrence of abundant felsic magmatic veinlets in the CRX implies that they could have experienced brittle deformation in the cold shallow crust, which agrees with an emplacement depth of about 5 km estimated using Al-in hornblende geobarometry. The high Sr-87/(86)Sri (0.7129) and low eNd(t) (-10.2) values imply that these CRX were derived from the upper continental crust. All these features suggest a typical reactive bulk assimilation process. Microanalysis of Sr-87/Sr-86 ratios in plagioclase from the Tonglu granitoids vary over a large range (0.7073-0.7137) with complex rim-core-rim variations, which resulted from open-system processes. Given the variation in Sr isotopes, four types of plagioclase were identified. Type I plagioclase are homogeneous in terms of Sr-87/Sr-86, suggesting normal crystal fractionation. Recharge of mafic magma injecting into felsic magma resulted in the core-mantle variations of type II plagioclases. Albitic cores with high Sr-87/Sr-86 (up to 0.7092) indicate felsic magma with highly radiogenic Sr (Sr-87/Sr-86> 0.7092). Influx of mafic magma with less radiogenic Sr (Sr-87/Sr-86<0.7080) resulted in a decrease in Sr-87/Sr-86 and an abrupt increase of An contents (similar to An(30) to similar to An(60)) from core to mantle. Type III plagioclase are distinguished by lower Sr-87/Sr-86 ratios in the core (0.7084-0.7086) and significantly more radiogenic Sr at the rim (0.7097-0.7112), which is attributed to the assimilation of the country rocks. Core-mantle-rim variations in type IV plagioclase not only record magma recharge events, but also crustal assimilation. Increasing An values and decreasing Sr-87/Sr-86 ratios (down to 0.7075) from core to mantle and significantly more radiogenic Sr (up to 0.7117) in the outer rim suggest that the recharge event took place prior to the assimilation of ancient crustalNational Nature Science Foundation of China [41530211]; MLR special funds for public welfare projects [201211013-2]; State Administration of Foreign Expert Affairs of China [B07039]; MOST special funds of the State Key Laboratory of Geological Processes and Mineral Resources [MSFGPMR01]12 month embargo; published online: 08 May 2018This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    • …
    corecore