524 research outputs found

    Conditional ablation of HDAC3 in islet beta cells results in glucose intolerance and enhanced susceptibility to STZ-induced diabetes

    Get PDF
    Histone deacetylases (HDACs) are enzymes that regulate gene expression by modifying chromatin structure through removal of acetyl groups from target histones or non-histone proteins. Previous in vitro studies suggest that HDACs may be novel pharmacological targets in immune-mediated islet β-cell destruction. However, the role of specific HDAC in islet β-cell development and function remain unclear. Here, we generated a conditional islet β-cells specific HDAC3 deletion mouse model to determine the consequences of HDAC3 depletion on islet β-cell differentiation, maintenance and function. Islet morphology, insulin secretion, glucose tolerance, and multiple low-dose streptozotocin (STZ)-induced diabetes incidence were evaluated and compared between HDAC3 knockout and wild type littermate controls. Mice with β-cell-specific HDAC3 deletion displayed decreased pancreatic insulin content, disrupted glucose-stimulated insulin secretion, with intermittent spontaneous diabetes and dramatically enhanced susceptibility to STZ-induced diabetes. Furthermore, islet β-cell line, MIN6 cells with siRNA-mediated HDAC3 silence, showed decreased insulin gene transcription, which was mediated, at least partially, through the upregulation of suppressors of cytokine signaling 3 (SOCS3). These results indicate the critical role of HDAC3 in normal β-cell differentiation, maintenance and function

    MicroRNA-Mediated Control of Oligodendrocyte Differentiation

    Get PDF
    SummaryMicroRNAs (miRNAs) regulate various biological processes, but evidence for miRNAs that control the differentiation program of specific neural cell types has been elusive. To determine the role of miRNAs in the formation of myelinating oligodendrocytes, we selectively deleted a miRNA-processing enzyme, Dicer1, in oligodendrocyte lineage cells. Mice lacking Dicer1 display severe myelinating deficits despite an expansion of the oligodendrocyte progenitor pool. To search for miRNAs responsible for the induction of oligodendrocyte maturation, we identified miR-219 and miR-338 as oligodendrocyte-specific miRNAs in spinal cord. Overexpression of these miRNAs is sufficient to promote oligodendrocyte differentiation. Additionally, blockage of these miRNA activities in oligodendrocyte precursor culture and knockdown of miR-219 in zebrafish inhibit oligodendrocyte maturation. miR-219 and miR-338 function in part by directly repressing negative regulators of oligodendrocyte differentiation, including transcription factors Sox6 and Hes5. These findings illustrate that miRNAs are important regulators of oligodendrocyte differentiation, providing new targets for myelin repair

    imPlatelet classifier: image-converted RNA biomarker profiles enable blood-based cancer diagnostics

    Get PDF
    Liquid biopsies offer a minimally invasive sample collection, outperforming traditional biopsies employed for cancer evaluation. The widely used material is blood, which is the source of tumor-educated platelets. Here, we developed the imPlatelet classifier, which converts RNA-sequenced platelet data into images in which each pixel corresponds to the expression level of a certain gene. Biological knowledge from the Kyoto Encyclopedia of Genes and Genomes was also implemented to improve accuracy. Images obtained from samples can then be compared against standard images for specific cancers to determine a diagnosis. We tested imPlatelet on a cohort of 401 non-small cell lung cancer patients, 62 sarcoma patients, and 28 ovarian cancer patients. imPlatelet provided excellent discrimination between lung cancer cases and healthy controls, with accuracy equal to 1 in the independent dataset. When discriminating between noncancer cases and sarcoma or ovarian cancer patients, accuracy equaled 0.91 or 0.95, respectively, in the independent datasets. According to our knowledge, this is the first study implementing an image-based deep-learning approach combined with biological knowledge to classify human samples. The performance of imPlatelet considerably exceeds previously published methods and our own alternative attempts of sample discrimination. We show that the deep-learning image-based classifier accurately identifies cancer, even when a limited number of samples are available.publishedVersio

    Climate change : strategies for mitigation and adaptation

    Get PDF
    The sustainability of life on Earth is under increasing threat due to humaninduced climate change. This perilous change in the Earth's climate is caused by increases in carbon dioxide and other greenhouse gases in the atmosphere, primarily due to emissions associated with burning fossil fuels. Over the next two to three decades, the effects of climate change, such as heatwaves, wildfires, droughts, storms, and floods, are expected to worsen, posing greater risks to human health and global stability. These trends call for the implementation of mitigation and adaptation strategies. Pollution and environmental degradation exacerbate existing problems and make people and nature more susceptible to the effects of climate change. In this review, we examine the current state of global climate change from different perspectives. We summarize evidence of climate change in Earth’s spheres, discuss emission pathways and drivers of climate change, and analyze the impact of climate change on environmental and human health. We also explore strategies for climate change mitigation and adaptation and highlight key challenges for reversing and adapting to global climate change

    Vimentin and PSF Act in Concert to Regulate IbeA+ E. coli K1 Induced Activation and Nuclear Translocation of NF-κB in Human Brain Endothelial Cells

    Get PDF
    IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PSF is required for meningitic E. coli K1 penetration and leukocyte transmigration across the blood-brain barrier (BBB), which are the hallmarks of bacterial meningitis. However, it is unknown how vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB, which are required for bacteria-mediated pathogenicities.IbeA-induced E. coli K1 invasion, polymorphonuclear leukocyte (PMN) transmigration and IKK/NF-κB activation are blocked by Caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB. IKKα/β phosphorylation is blocked by ERK inhibitors. Co-immunoprecipitation analysis shows that vimentin forms a complex with IκB, NF-κB and tubulins in the resting cells. A dissociation of this complex and a simultaneous association of PSF with NF-κB could be induced by IbeA in a time-dependent manner. The head domain of vimentin is required for the complex formation. Two cytoskeletal components, vimentin filaments and microtubules, contribute to the regulation of NF-κB. SiRNA-mediated knockdown studies demonstrate that IKKα/β phosphorylation is completely abolished in HBMECs lacking vimentin and PSF. Phosphorylation of ERK and nuclear translocation of NF-κB are entirely dependent on PSF. These findings suggest that vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB activation. PSF is essential for translocation of NF-κB and ERK to the nucleus.These findings reveal previously unappreciated facets of the IbeA-binding proteins. Cooperative contributions of vimentin and PSF to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB may represent a new paradigm in pathogen-induced signal transduction and lead to the development of novel strategies for the prevention and treatment of bacterial meningitis

    Prevalence and trend of hepatitis C virus infection among blood donors in Chinese mainland: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood transfusion is one of the most common transmission pathways of hepatitis C virus (HCV). This paper aims to provide a comprehensive and reliable tabulation of available data on the epidemiological characteristics and risk factors for HCV infection among blood donors in Chinese mainland, so as to help make prevention strategies and guide further research.</p> <p>Methods</p> <p>A systematic review was constructed based on the computerized literature database. Infection rates and 95% confidence intervals (95% CI) were calculated using the approximate normal distribution model. Odds ratios and 95% CI were calculated by fixed or random effects models. Data manipulation and statistical analyses were performed using STATA 10.0 and ArcGIS 9.3 was used for map construction.</p> <p>Results</p> <p>Two hundred and sixty-five studies met our inclusion criteria. The pooled prevalence of HCV infection among blood donors in Chinese mainland was 8.68% (95% CI: 8.01%-9.39%), and the epidemic was severer in North and Central China, especially in Henan and Hebei. While a significant lower rate was found in Yunnan. Notably, before 1998 the pooled prevalence of HCV infection was 12.87% (95%CI: 11.25%-14.56%) among blood donors, but decreased to 1.71% (95%CI: 1.43%-1.99%) after 1998. No significant difference was found in HCV infection rates between male and female blood donors, or among different blood type donors. The prevalence of HCV infection was found to increase with age. During 1994-1995, the prevalence rate reached the highest with a percentage of 15.78% (95%CI: 12.21%-19.75%), and showed a decreasing trend in the following years. A significant difference was found among groups with different blood donation types, Plasma donors had a relatively higher prevalence than whole blood donors of HCV infection (33.95% <it>vs </it>7.9%).</p> <p>Conclusions</p> <p>The prevalence of HCV infection has rapidly decreased since 1998 and kept a low level in recent years, but some provinces showed relatively higher prevalence than the general population. It is urgent to make efficient measures to prevent HCV secondary transmission and control chronic progress, and the key to reduce the HCV incidence among blood donors is to encourage true voluntary blood donors, strictly implement blood donation law, and avoid cross-infection.</p

    Advances in heterometallic ring-opening (co)polymerisation catalysis

    Get PDF
    Truly sustainable plastics require renewable feedstocks coupled with efficient production and end-of-life degradation/recycling processes. Some of the most useful degradable materials are aliphatic polyesters, polycarbonates and polyamides, which are often prepared via ring-opening (co)polymerisation (RO(CO)P) using an organometallic catalyst. While there has been extensive research into ligand development, heterometallic cooperativity offers an equally promising yet underexplored strategy to improve catalyst performance, as heterometallic catalysts often exhibit significant activity and selectivity enhancements compared to their homometallic counterparts. This review describes advances in heterometallic RO(CO)P catalyst design, highlighting the overarching structure-activity trends and reactivity patterns to inform future catalyst design

    Controlled three-dimensional polystyrene micro- and nano-structures fabricated by three- dimensional electrospinning

    Get PDF
    The combination of electrospinning with extrusion based 3D printing technology opens new pathways for micro- and nanofabrication, which can be applied in a wide range of applications. This simple and inexpensive method has been proven to fabricate 3D fibrous polystyrene structures with controlled morphology and micro- to nano-scale fibers diameter. The controllable movement of the nozzle allows precise positioning of the deposition area of the fibers during electrospinning. A programmed circular nozzle pattern results in the formation of controllable 3D polystyrene designed shapes with fiber diameters down to 550 nm. The assembly of the fibrous structures starts instantaneously, and a 4 cm tall and 6 cm wide sample can be produced within a 10 minutes electrospinning process. The product exhibits high stability at ambient conditions. The shape, size, and thickness of fibrous polystyrene structures can be easily controlled by tuning the process parameters. It is assumed that the build-up of 3D fibrous polystyrene structures strongly depends on charge induction and polarization of the electrospun fibers

    Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation

    Full text link
    corecore