181 research outputs found

    Recursive joint Cramér‐Rao lower bound for parametric systems with two‐adjacent‐states dependent measurements

    Get PDF
    Joint Cramér-Rao lower bound (JCRLB) is very useful for the performance evaluation of joint state and parameter estimation (JSPE) of non-linear systems, in which the current measurement only depends on the current state. However, in reality, the non-linear systems with two-adjacent-states dependent (TASD) measurements, that is, the current measurement is dependent on the current state as well as the most recent previous state, are also common. First, the recursive JCRLB for the general form of such non-linear systems with unknown deterministic parameters is developed. Its relationships with the posterior CRLB for systems with TASD measurements and the hybrid CRLB for regular parametric systems are also provided. Then, the recursive JCRLBs for two special forms of parametric systems with TASD measurements, in which the measurement noises are autocorrelated or cross-correlated with the process noises at one time step apart, are presented, respectively. Illustrative examples in radar target tracking show the effectiveness of the JCRLB for the performance evaluation of parametric TASD systems

    Synergy of slippery surface and pulse flow: An anti-scaling solution for direct contact membrane distillation

    Get PDF
    Recent progress on mitigating scaling on hydrophobic membrane distillation (MD) membrane focuses on the design of superhydrophobic/omniphobic surface and process optimization. However, the rationale for scaling resistance is not yet complete. We attempted in this work to unravel the correlation of scaling resistance based on the synergy of slippery surface (via chem-physical engineering) and pulse flow (process engineering). Superhydrophobic micro-pillared polyvinylidene fluoride (MP-PVDF) and CF4 plasma modified MP-PVDF (CF4-MP-PVDF) were utilized as the model membranes. We proposed rheometry as a simple quantitative measure for the wetting state in a hydrodynamic environment. Results showed that MP-PVDF possessed pinned wetting and prone to scaling (2000 mg/L CaSO4 solution) in both steady and pulse flow. In contrast, the CF4-MP-PVDF showed suspended wetting and excellent scaling resistance (at water recovery of 60%, the CF4-MP-PVDF surface was still clean without any crystals) under pulse flow, but not at steady flow. At steady flow, feed over-pressure changes the suspended wetting to pinned wetting by pushing the water-gas interface into the pillars, thereby resulting in scaling for CF4-MP-PVDF. At pulse flow, rhythmic fluctuation in the water-gas interface for CF4-MP-PVDF led to sustained scaling resistance. For the first time, we experimentally demonstrated a scaling resistance in DCMD via engineering surface wetting state and process. We envision that this rationale would pave the forward-looking strategy for a robust stable MD process in the near future

    Genetic analysis and QTL mapping of traits related to head shape in cabbage (Brassica oleracea var. capitata L.)

    Get PDF
    AbstractTraits related to head shape, including Hvd (head vertical diameter), Htd (head transverse diameter), and Hsi (head shape index, the ratio of Hvd/Htd), are very important agronomic traits associated with both yield and quality in cabbage (Brassica oleracea var. capitata L.). However, reports of inheritance analysis and quantitative trait locus (QTL) mapping of these traits remain rare. In this study, a double haploid (DH) population with 130 lines constructed from a cross between 24-5 (inbred line, oblate head)×01-88 (inbred line, round head) was used to analyze inheritance and to detect QTLs related to Htd and Hsi using major gene plus polygene mixed inheritance analysis and inclusive composite interval mapping (ICIM). The results indicated that Htd was controlled by two independent major genes and polygenes with recessive-epistatic effects. Hsi was controlled by two linkage major genes and polygenes with cumulative effects. A genetic linkage map with 48 insertions or deletions (InDel) and 149 simple sequence repeat (SSR) markers was constructed based on the DH population, with a total length of 866.2cM and an average interval length of 4.40cM. Fourteen QTLs for Htd and Hsi were identified on six chromosomes based on two years of phenotypic data with ICIM. Ten of the QTLs explained greater than 10.0% of the phenotypic variance, and five QTLs could be repeatedly detected in two years. For Htd, two major QTLs, Htd 3.1 and Htd 8.1, explained 19.16–24.56% and 11.25–21.55% of the phenotypic variation in the two years, respectively. For Hsi, two major QTLs, Hsi 7.1 and Hsi 7.2, explained 22.30–24.93% and 14.85–16.79% of phenotypic variation in the two years, respectively. The results from QTL mapping and genetic analysis in both years were partially consistent and complemented each other. Our results provide a foundation for further research on genetic regulation, gene cloning and molecular marker-assisted selection (MAS) for head shape in cabbage

    Genome-wide identification and characterization of non-specific lipid transfer proteins in cabbage

    Get PDF
    Plant non-specific lipid transfer proteins (nsLTPs) are a group of small, secreted proteins that can reversibly bind and transport hydrophobic molecules. NsLTPs play an important role in plant development and resistance to stress. To date, little is known about the nsLTP family in cabbage. In this study, a total of 89 nsLTP genes were identified via comprehensive research on the cabbage genome. These cabbage nsLTPs were classified into six types (1, 2, C, D, E and G). The gene structure, physical and chemical characteristics, homology, conserved motifs, subcellular localization, tertiary structure and phylogeny of the cabbage nsLTPs were comprehensively investigated. Spatial expression analysis revealed that most of the identified nsLTP genes were positively expressed in cabbage, and many of them exhibited patterns of differential and tissue-specific expression. The expression patterns of the nsLTP genes in response to biotic and abiotic stresses were also investigated. Numerous nsLTP genes in cabbage were found to be related to the resistance to stress. Moreover, the expression patterns of some nsLTP paralogs in cabbage showed evident divergence. This study promotes the understanding of nsLTPs characteristics in cabbage and lays the foundation for further functional studies investigating cabbage nsLTPs

    State funded places in independent day schools before 1976

    Get PDF
    Transfection efficiency of Ad-A20 and Ad-ABIN1. Transfection efficiencies were determined using signals of GFP co-expression from Ad-A20 and Ad-ABIN1 vectors. The efficiencies were approximately > 90 %. (TIFF 2031 kb

    Overcoming Cabbage Crossing Incompatibility by the Development and Application of Self-Compatibility-QTL- Specific Markers and Genome-Wide Background Analysis

    Get PDF
    Cabbage hybrids, which clearly present heterosis vigor, are widely used in agricultural production. We compared two S5 haplotype (Class II) cabbage inbred-lines 87–534 and 94–182: the former is highly SC while the latter is highly SI; sequence analysis of SI-related genes including SCR, SRK, ARC1, THL1, and MLPK indicates the some SNPs in ARC1 and SRK of 87–534; semi-quantitative analysis indicated that the SI-related genes were transcribed normally from DNA to mRNA. To unravel the genetic basis of SC, we performed whole-genome mapping of the quantitative trait loci (QTLs) governing self-compatibility using an F2 population derived from 87–534 × 96–100. Eight QTLs were detected, and high contribution rates (CRs) were observed for three QTLs: qSC7.2 (54.8%), qSC9.1 (14.1%) and qSC5.1 (11.2%). 06–88 (CB201 × 96–100) yielded an excellent hybrid. However, F1 seeds cannot be produced at the anthesis stage because the parents share the same S-haplotype (S57, class I). To overcome crossing incompatibility, we performed rapid introgression of the self-compatibility trait from 87–534 to 96–100 using two self-compatibility-QTL-specific markers, BoID0709 and BoID0992, as well as 36 genome-wide markers that were evenly distributed along nine chromosomes for background analysis in recurrent back-crossing (BC). The transfer process showed that the proportion of recurrent parent genome (PRPG) in BC4F1 was greater than 94%, and the ratio of individual SC plants in BC4F1 reached 100%. The newly created line, which was designated SC96–100 and exhibited both agronomic traits that were similar to those of 96–100 and a compatibility index (CI) greater than 5.0, was successfully used in the production of the commercial hybrid 06–88. The study herein provides new insight into the genetic basis of self-compatibility in cabbage and facilitates cabbage breeding using SC lines in the male-sterile (MS) system

    A Multilab Replication of the Ego Depletion Effect

    Get PDF
    There is an active debate regarding whether the ego depletion effect is real. A recent preregistered experiment with the Stroop task as the depleting task and the antisaccade task as the outcome task found a medium-level effect size. In the current research, we conducted a preregistered multilab replication of that experiment. Data from 12 labs across the globe (N = 1,775) revealed a small and significant ego depletion effect, d = 0.10. After excluding participants who might have responded randomly during the outcome task, the effect size increased to d = 0.16. By adding an informative, unbiased data point to the literature, our findings contribute to clarifying the existence, size, and generality of ego depletion
    corecore