19 research outputs found

    A comparative photocatalytic study of TiO2 loaded on three natural clays with different morphologies

    Full text link
    [EN] In this work, a sol-gel method was used to load TiO2 nanoparticles on three clays (kaolinite, halloysite and palygorskite) with different morphologies (plates, tubes, and rods with micro tunnels), and then the photocatalytic performance of obtained clay-TiO2 composites for degradation of methyl orange was comparatively investigated. The results surprisingly show that the trend of photocatalytic performance of composites is opposite to that of special surface area of corresponding clays. By concentrated analysis of the loading status of TiO2, the lowest photocatalytic efficiency of palygorskite-TiO2 composite is mainly ascribed to (1) the aggregation of TiO2 nanoparticles on Pal surface, not the amount of TiO2 and (2) the relatively weak adsorption of Pal to methyl orange. The additional adsorption of hydroxyl surface of Kaol to methyl orange and little TiO2 in the lumen of Hal tube leads to the better photocatalytic performance of kaolinite-TiO2 composite than halloysite-TiO2 composite. Finally, kaolinite is proved to be an excellent carrier to support nano TiO2 resulting in a good photocatalytic performance and cycle stability, and the study can provide a direct guidance to select appropriate clay-photocatalyst composites for different practical applications.This work is supported by the National Natural Science Foundation of China (41502032) and the Fundamental Research Funds for the Central Universities (2019XKQYMS76).Wu, A.; Wang, D.; Wei, C.; Zhang, X.; Liu, Z.; Feng, P.; Ou, X.... (2019). A comparative photocatalytic study of TiO2 loaded on three natural clays with different morphologies. Applied Clay Science. 183:1-12. https://doi.org/10.1016/j.clay.2019.105352S11218

    Generalizations of principally quasi-injective modules and quasiprincipally injective modules

    Get PDF
    Let R be a ring and M a right R-module with S=End(MR). The module M is called almost principally quasi-injective (or APQ-injective for short) if, for any m∈M, there exists an S-submodule Xm of M such that lMrR(m)=Sm⊕Xm. The module M is called almost quasiprincipally injective (or AQP-injective for short) if, for any s∈S, there exists a left ideal Xs of S such that lS(Ker(s))=Ss⊕Xs. In this paper, we give some characterizations and properties of the two classes of modules. Some results on principally quasi-injective modules and quasiprincipally injective modules are extended to these modules, respectively. Specially in the case RR, we obtain some results on AP-injective rings as corollaries

    On a class of operators in the hyperfinite II1\mathrm{II}_1 factor

    No full text
    Let RR be the hyperfinite II1\mathrm {II}_1 factor and let uu, vv be two generators of RR such that uu=vv=1u^*u=v^*v=1 and vu=e2πiθuvvu=e^{2\pi i\theta } uv for an irrational number θ\theta. In this paper we study the class of operators uf(v)uf(v), where ff is a bounded Lebesgue measurable function on the unit circle S1S^1. We calculate the spectrum and Brown spectrum of operators uf(v)uf(v), and study the invariant subspace problem of such operators relative to RR. We show that under general assumptions the von Neumann algebra generated by uf(v)uf(v) is an irreducible subfactor of RR with index nn for some natural number nn, and the CC^*-algebra generated by uf(v)uf(v) and the identity operator is a generalized universal irrational rotation CC^*-algebra

    Gold Nanocluster-Based Fluorescent Probes for Near-Infrared and Turn-On Sensing of Glutathione in Living Cells

    No full text
    In this study, a novel Au nanocluster (NC)-based fluorescent sensor has been designed for near-infrared (NIR) and turn-on sensing of glutathione (GSH) in both living cells and human blood samples. The large Stokes-shifted (140 nm) fluorescent Au NCs with NIR emission and long-wavelength excitation have been rapidly synthesized for 2 h by means of a microwave-assisted method in aqueous solution. The addition of Hg<sup>II</sup> leads to an almost complete emission quenching (98%) of Au NCs because of the interaction of Hg<sup>II</sup> and Au<sup>I</sup> on the surface of Au NCs. After introducing GSH to the Au NC–Hg<sup>II</sup> system, a more than 20 times fluorescent enhancement is obtained because of the preferable affinity of GSH with Hg<sup>II</sup>. Under optimum conditions, the fluorescence recovery is linearly proportional to the concentration of GSH between 0.04 and 16.0 μM and the detection limit is as low as 7.0 nM. This Au NC-based sensor with high sensitivity and low spectral interference has been proven to facilitate biosensing applications

    Overexpression of AtEDT1/HDG11 in Chinese kale (Brassica oleracea var. alboglabra) enhances drought and osmotic stress tolerance

    Get PDF
    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA- mediated signaling response in Chinese kale

    Overexpression of EgrIAA20 from Eucalyptus grandis, a Non-Canonical Aux/IAA Gene, Specifically Decouples Lignification of the Different Cell-Types in Arabidopsis Secondary Xylem

    No full text
    Wood (secondary xylem) formation is regulated by auxin, which plays a pivotal role as an integrator of developmental and environmental cues. However, our current knowledge of auxin-signaling during wood formation is incomplete. Our previous genome-wide analysis of Aux/IAAs in Eucalyptus grandis showed the presence of the non-canonical paralog member EgrIAA20 that is preferentially expressed in cambium. We analyzed its cellular localization using a GFP fusion protein and its transcriptional activity using transactivation assays, and demonstrated its nuclear localization and strong auxin response repressor activity. In addition, we functionally tested the role of EgrIAA20 by constitutive overexpression in Arabidopsis to investigate for phenotypic changes in secondary xylem formation. Transgenic Arabidopsis plants overexpressing EgrIAA20 were smaller and displayed impaired development of secondary fibers, but not of other wood cell types. The inhibition in fiber development specifically affected their cell wall lignification. We performed yeast-two-hybrid assays to identify EgrIAA20 protein partners during wood formation in Eucalyptus, and identified EgrIAA9A, whose ortholog PtoIAA9 in poplar is also known to be involved in wood formation. Altogether, we showed that EgrIAA20 is an important auxin signaling component specifically involved in controlling the lignification of wood fibers

    BocODD1 and BocODD2 Regulate the Biosynthesis of Progoitrin Glucosinolate in Chinese Kale

    No full text
    Progoitrin (2-hydroxy-3-butenyl glucosinolate, PRO) is the main source of bitterness of Brassica plants. Research on the biosynthesis of PRO glucosinolate can aid the understanding of the nutritional value in Brassica plants. In this study, four ODD genes likely involved in PRO biosynthesis were cloned from Chinese kale. These four genes, designated as BocODD1&ndash;4, shared 75&ndash;82% similarities with the ODD sequence of Arabidopsis. The sequences of these four BocODDs were analyzed, and BocODD1 and BocODD2 were chosen for further study. The gene BocODD1,2 showed the highest expression levels in the roots, followed by the leaves, flowers, and stems, which is in accordance with the trend of the PRO content in the same tissues. Both the expression levels of BocODD1,2 and the content of PRO were significantly induced by high- and low-temperature treatments. The function of BocODDs involved in PRO biosynthesis was identified. Compared with the wild type, the content of PRO was increased twofold in the over-expressing BocODD1 or BocODD2 plants. Meanwhile, the content of PRO was decreased in the BocODD1 or BocODD2 RNAi lines more than twofold compared to the wildtype plants. These results suggested that BocODD1 and BocODD2 may play important roles in the biosynthesis of PRO glucosinolate in Chinese kale

    The 3D architecture of the pepper genome and its relationship to function and evolution.

    No full text
    The organization of chromatin into self-interacting domains is universal among eukaryotic genomes, though how and why they form varies considerably. Here we report a chromosome-scale reference genome assembly of pepper (Capsicum annuum) and explore its 3D organization through integrating high-resolution Hi-C maps with epigenomic, transcriptomic, and genetic variation data. Chromatin folding domains in pepper are as prominent as TADs in mammals but exhibit unique characteristics. They tend to coincide with heterochromatic regions enriched with retrotransposons and are frequently embedded in loops, which may correlate with transcription factories. Their boundaries are hotspots for chromosome rearrangements but are otherwise depleted for genetic variation. While chromatin conformation broadly affects transcription variance, it does not predict differential gene expression between tissues. Our results suggest that pepper genome organization is explained by a model of heterochromatin-driven folding promoted by transcription factories and that such spatial architecture is under structural and functional constraints
    corecore