2,702 research outputs found

    X-ray Imaging of Transplanar Liquid Transport Mechanisms in Single Layer Textiles

    Get PDF
    Understanding the penetration of liquids within textile fibers is critical for the development of next-generation smart textiles. Despite substantial research on liquid penetration in the plane of the textile, little is known about how the liquid penetrates in the thickness direction. Here we report a time-resolved high-resolution X-ray measurement of the motion of the liquid–air interface within a single layer textile, as the liquid is transported across the textile thickness following the deposition of a droplet. The measurement of the time-dependent position of the liquid meniscus is made possible by the use of ultrahigh viscosity liquids (dynamic viscosity from 10<sup>5</sup> to 2.5 × 10<sup>6</sup> times larger than water). This approach enables imaging due to the slow penetration kinetics. Imaging results suggest a three-stage penetration process with each stage being associated with one of the three types of capillary channels existing in the textile geometry, providing insights into the effect of the textile structure on the path of the three-dimensional liquid meniscus. One dimensional kinetics studies show that our data for the transplanar penetration depth Δ<i>x</i><sub>L</sub> vs time do not conform to a power law, and that the measured rate of penetration for long times is smaller than that predicted by Lucas–Washburn kinetics, challenging commonly held assumptions regarding the validity of power laws when applied to relatively thin textiles

    Critical properties of the Hintermann-Merlini model

    Full text link
    Many critical properties of the Hintermann-Merlini model are known exactly through the mapping to the eight-vertex model. Wu [J. Phys. C {\bf 8}, 2262 (1975)] calculated the spontaneous magnetizations of the model on two sublattices by relating them to the conjectured spontaneous magnetization and polarization of the eight-vertex model, respectively. The latter conjecture remains unproved. In this paper, we numerically study the critical properties of the model by means of a finite-size scaling analysis based on transfer matrix calculations and Monte Carlo simulations. All analytic predictions for the model are confirmed by our numerical results. The central charge c=1c=1 is found for the critical manifold investigated. In addition, some unpredicted geometry properties of the model are studied. Fractal dimensions of the largest Ising clusters on two sublattices are determined. The fractal dimension of the largest Ising cluster on the sublattice A takes fixed value Da=1.888(2)D_{\rm a}=1.888(2), while that for sublattice B varies continuously with the parameters of the model.Comment: 8 pages, 10 figure

    Chimeric NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer. Cancer Res

    Get PDF
    Abstract Despite advancements in the treatment of ovarian cancer, this disease continues to be a leading cause of cancer death in women. Adoptive transfer of tumor-reactive T cells is a promising antitumor therapy for many cancers. We designed a chimeric receptor linking NKG2D, a natural killer (NK) cellactivating receptor, to the CD3Z chain of the T-cell receptor to target ovarian tumor cells. Engagement of chimeric NKG2D receptors (chNKG2D) with ligands for NKG2D, which are commonly expressed on tumor cells, leads to T-cell secretion of proinflammatory cytokines and tumor cytotoxicity. In this study, we show that &gt;80% of primary human ovarian cancer samples expressed ligands for NKG2D on the cell surface. The tumor samples expressed MHC class I-related protein A, MICB, and UL-16 binding proteins 1 and 3. ChNKG2D-expressing T cells lysed ovarian cancer cell lines. We show that T cells from ovarian cancer patients that express chNKG2D secreted proinflammatory cytokines when cultured with autologous tumor cells. In addition, we show that chNKG2D T cells can be used therapeutically in a murine model of ovarian cancer. These data indicate that treatment with chNKG2D-expressing T cells is a potential immunotherapy for ovarian cancer. [Cancer Res 2007;67(10):5003-8

    Limbic-Predominant Age-Related TDP-43 Encephalopathy Differs from Frontotemporal Lobar Degeneration

    Get PDF
    TAR-DNA binding protein-43 (TDP-43) proteinopathy is seen in multiple brain diseases. A standardized terminology was recommended recently for common age-related TDP-43 proteinopathy: limbic-predominant, age-related TDP-43 encephalopathy (LATE) and the underlying neuropathological changes, LATE-NC. LATE-NC may be co-morbid with Alzheimer’s disease neuropathological changes (ADNC). However, there currently are ill-defined diagnostic classification issues among LATE-NC, ADNC, and frontotemporal lobar degeneration with TDP-43 (FTLD-TDP). A practical challenge is that different autopsy cohorts are composed of disparate groups of research volunteers: hospital- and clinic-based cohorts are enriched for FTLD-TDP cases, whereas community-based cohorts have more LATE-NC cases. Neuropathological methods also differ across laboratories. Here, we combined both cases and neuropathologists’ diagnoses from two research centres—University of Pennsylvania and University of Kentucky. The study was designed to compare neuropathological findings between FTLD-TDP and pathologically severe LATE-NC. First, cases were selected from the University of Pennsylvania with pathological diagnoses of either FTLD-TDP (n = 33) or severe LATE-NC (mostly stage 3) with co-morbid ADNC (n = 30). Sections from these University of Pennsylvania cases were cut from amygdala, anterior cingulate, superior/mid-temporal, and middle frontal gyrus. These sections were stained for phospho-TDP-43 immunohistochemically and evaluated independently by two University of Kentucky neuropathologists blinded to case data. A simple set of criteria hypothesized to differentiate FTLD-TDP from LATE-NC was generated based on density of TDP-43 immunoreactive neuronal cytoplasmic inclusions in the neocortical regions. Criteria-based sensitivity and specificity of differentiating severe LATE-NC from FTLD-TDP cases with blind evaluation was ∼90%. Another proposed neuropathological feature related to TDP-43 proteinopathy in aged individuals is ‘Alpha’ versus ‘Beta’ in amygdala. Alpha and Beta status was diagnosed by neuropathologists from both universities (n = 5 raters). There was poor inter-rater reliability of Alpha/Beta classification (mean κ = 0.31). We next tested a separate cohort of cases from University of Kentucky with either FTLD-TDP (n = 8) or with relatively ‘pure’ severe LATE-NC (lacking intermediate or severe ADNC; n = 14). The simple criteria were applied by neuropathologists blinded to the prior diagnoses at University of Pennsylvania. Again, the criteria for differentiating LATE-NC from FTLD-TDP was effective, with sensitivity and specificity ∼90%. If more representative cases from each cohort (including less severe TDP-43 proteinopathy) had been included, the overall accuracy for identifying LATE-NC was estimated at \u3e 98% for both cohorts. Also across both cohorts, cases with FTLD-TDP died younger than those with LATE-NC (P \u3c 0.0001). We conclude that in most cases, severe LATE-NC and FTLD-TDP can be differentiated by applying simple neuropathological criteria

    Monte Carlo simulation of a two-dimensional continuum Coulomb gas

    Full text link
    We study the classical two-dimensional Coulomb gas model for thermal vortex fluctuations in thin superconducting/superfluid films by Monte Carlo simulation of a grand canonical vortex ensemble defined on a continuum. The Kosterlitz-Thouless transition is well understood at low vortex density, but at high vortex density the nature of the phase diagram and of the vortex phase transition is less clear. From our Monte Carlo data we construct phase diagrams for the 2D Coulomb gas without any restrictions on the vortex density. For negative vortex chemical potential (positive vortex core energy) we always find a Kosterlitz-Thouless transition. Only if the Coulomb interaction is supplemented with a short-distance repulsion, a first order transition line is found, above some positive value of the vortex chemical potential.Comment: 10 pages RevTeX, 7 postscript figures included using eps

    A bovine lymphosarcoma cell line infected with theileria annulata exhibits an irreversible reconfiguration of host cell gene expression

    Get PDF
    Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner

    Search for the lepton-family-number nonconserving decay \mu -> e + \gamma

    Full text link
    The MEGA experiment, which searched for the muon- and electron-number violating decay \mu -> e + \gamma, is described. The spectrometer system, the calibrations, the data taking procedures, the data analysis, and the sensitivity of the experiment are discussed. The most stringent upper limit on the branching ratio of \mu -> e + \gamma) < 1.2 x 10^{-11} was obtained

    Mechanisms of light energy harvesting in dendrimers and hyperbranched polymers

    Get PDF
    Since their earliest synthesis, much interest has arisen in the use of dendritic and structurally allied forms of polymer for light energy harvesting, especially as organic adjuncts for solar energy devices. With the facility to accommodate a proliferation of antenna chromophores, such materials can capture and channel light energy with a high degree of efficiency, each polymer unit potentially delivering the energy of one photon-or more, when optical nonlinearity is involved. To ensure the highest efficiency of operation, it is essential to understand the processes responsible for photon capture and channelling of the resulting electronic excitation. Highlighting the latest theoretical advances, this paper reviews the principal mechanisms, which prove to involve a complex interplay of structural, spectroscopic and electrodynamic properties. Designing materials with the capacity to capture and control light energy facilitates applications that now extend from solar energy to medical photonics. © 2011 by the authors; licensee MDPI, Basel, Switzerland

    An extreme firm-specific news sentiment asymmetry based trading strategy

    Get PDF
    News sentiment has been empirically observed to have impact on financial market returns. In this study, we investigate firm-specific news from the Thomson Reuters News Analytics data from 2003 to 2014 and propose an optimal trading strategy based on a sentiment shock score and a sentiment trend score which measure extreme positive and negative sentiment levels for individual stocks. The intuition behind this approach is that the impact of events that generate extreme investor sentiment changes tends to have long and lasting effects to market movement and hence provides better prediction to market returns. We document that there exists an optimal signal region for both indicators. And we also show extreme positive sentiment provides better a signal than extreme negative sentiment, which presents an asymmetric market behavior in terms of news sentiment impact. The back test results show that extreme positive sentiment generates robust and superior trading signals in all market conditions, and its risk-adjusted returns significantly outperform the S&P 500 index over the same time period

    Effects of dissipation on quantum phase transitions

    Full text link
    We discuss the effect of dissipation on quantum phase transitions. In particular we concentrate on the Superconductor to Insulator and Quantum-Hall to Insulator transitions. By invoking a phenomenological parameter α\alpha to describe the coupling of the system to a continuum of degrees of freedom representing the dissipative bath, we obtain new phase diagrams for the quantum Hall and superconductor-insulator problems. Our main result is that, in two-dimensions, the metallic phases observed in finite magnetic fields (possibly also strictly zero field) are adiabatically deformable from one to the other. This is plausible, as there is no broken symmetry which differentiates them.Comment: 13 pages, 4 figure
    • …
    corecore