1,377 research outputs found

    Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study

    No full text
    The interactions between four different graphenes (including pristine, B- or N-doped and defective graphenes) and small gas molecules (CO, NO, NO2 and NH3) were investigated by using density functional computations to exploit their potential applications as gas sensors. The structural and electronic properties of the graphene-molecule adsorption adducts are strongly dependent on the graphene structure and the molecular adsorption configuration. All four gas molecules show much stronger adsorption on the doped or defective graphenes than that on the pristine graphene. The defective graphene shows the highest adsorption energy with CO, NO and NO2 molecules, while the B- doped graphene gives the tightest binding with NH3. Meanwhile, the strong interactions between the adsorbed molecules and the modified graphenes induce dramatic changes to graphene's electronic properties. The transport behavior of a gas sensor using B- doped graphene shows a sensitivity two orders of magnitude higher than that of pristine graphene. This work reveals that the sensitivity of graphene-based chemical gas sensors could be drastically improved by introducing the appropriate dopant or defect

    Fabrication and interface electrical properties of Fe<sub>3</sub>O<sub>4</sub>/MgO/GaAs(100) spin contacts

    Get PDF
    Moderately doped n-GaAs(100) substrates (n= 5 x 10 17cm3 ) with In Ohmic back contacts were annealed in the growth chamber with a base pressure of 1 x 10-8 mbar for 60 min at 830 K prior to the film stack growth. MgO layer was then grown by e-beam evaporation at a rate of 2 Amin-1 while the substrates were kept at 673 K, followed by postgrowth annealing of a 3.0 nm thick epitaxial Fe at 500 K in an O2 partial pressure of 5 x 10-5 mbar for 10 min. As for Fe3O4-GaAs(100), the tunneling barrier deposition was skipped. The epitaxial spin contacts were ex situ characterized by current-voltage (I-V) measurements. The junction size ranges from 25 to 200 μm square and were patterned by standard photolithography and wet etching using a 50 nm thick thermally evaporated Au layer as an etch mask

    Magnetization reversal and magnetic anisotropy in Co network nanostructures

    Get PDF
    The magnetization reversal and magnetic anisotropy in Co network structures have been studied using magneto-optic Kerr effect (MOKE). An enhancement of the coercivity is observed in the network structures and is attributed to the pinning of domain walls by the hole edges in the vicinity of which the demagnetizing field spatially varies. We find that the magnetization reversal process is dominated by the intrinsic unaxial anisotropy (2K(u)/M(s)approximate to 200 Oe) in spite of the shape anisotropy induced by the hole edges. The influence of the cross-junction on the competition between the intrinsic uniaxial anisotropy and the induced shape anisotropy is discussed using micromagnetic simulations

    Preparation and characterization of diamond–silicon carbide–silicon composites by gaseous silicon vacuum infiltration process

    No full text
    Diamond–SiC–Si composites have been prepared using gaseous silicon vacuum infiltration. The evolution of the phases and microstructures of the composites have been analyzed using X-ray diffraction technique and scanning electron microscopy. It has been found that the diamond–SiC–Si composite is composed of β-SiC, diamond, and residual Si. The diamond particles were distributed homogeneously in the dense matrix of the composites. Besides, the effects of particle size and content of diamond on the properties of diamond–SiC–Si composites have been analyzed. The thermal conductivity of the composites increases with particle size and content of diamond. When the particle size and content of diamond are 300 µm and 80 wt %, respectively, the thermal conductivity of the composites approaches the value of 280 W·m⁻¹·K⁻¹.Проведен анализ эволюции фаз и микроструктуры композитов алмаз–SiC–Si, изготовленных с использованием процесса вакуумной инфильтрации газообразного кремния. Исследование выполнено с помощью дифракции рентгеновских лучей и сканирующей электронной микроскопии. Установлено, что композит алмаз–SiC–Si состоит из β-SiC, алмаза и остаточного Si. Алмазные частицы распределены однородно в плотной матрице композитов. Также проанализировано влияние размера частиц и содержания алмазов на свойства композитов алмаз–SiC–Si. Показано, что теплопроводность композитов возрастает с увеличением размера частиц и содержания алмазов. Теплопроводность композитов приближается к значению 280 Вт∙м⁻¹∙K⁻¹ при размере частиц и содержании алмаза 300 мкм и 80 % (по массе), соответственно.Проведено аналіз еволюції фаз і мікроструктури композитів алмаз–SiC–Si, виготовлених з використанням процесу вакуумної інфільтрації газоподібного кремнію. Дослідження виконано за допомогою дифракції рентгенівських променів і скануючої електронної мікроскопії. Встановлено, що композит алмаз–SiC–Si складається з β-SiC, алмазу і залишкового Si. Алмазні частки розподілені однорідно в щільній матриці композитів. Також проаналізовано вплив розміру частинок і вмісту алмазів на властивості композитів алмаз–SiC–Si. Показано, що теплопровідність композитів зростає зі збільшенням розміру частинок і вмісту алмазів. Теплопровідність композитів наближається до значення 280 Вт∙м⁻¹∙K⁻¹ при розмірі частинок і вмісту алмазу 300 мкм і 80 % (за масою) відповідно.This work was financially supported by the National Natural Science Foundation of China (grant no. 51102282) and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province

    Enhanced iron and zinc accumulation in genetically engineered wheat plants using sickle alfalfa (Medicago falcata L.) ferritin gene

    Get PDF
    Iron deficiency is the most common nutritional disorder, affecting over 30% of the world’s human population. The primary method used to alleviate this problem is nutrient biofortification of crops so as to improve the iron content and its availability in food sources. The over-expression of ferritin is an effective method to increase iron concentration in transgenic crops. For the research reported herein, sickle alfalfa (Medicago falcata L.) ferritin was transformed into wheat driven by the seed-storage protein glutelin GluB-1 gene promoter. The integration of ferritin into the wheat was assessed by PCR, RT-PCR and Western blotting. The concentration of certain minerals in the transgenic wheat grain was determined by inductively coupled plasma-atomic emission spectrometry, the results showed that grain Fe and Zn concentration of transgenic wheat increased by 73% and 44% compared to nontransformed wheat, respectively. However, grain Cu and Cd concentration of transgenic wheat grain decreased significantly in comparison with non-transformed wheat. The results suggest that the over-expression of sickle alfalfa ferritin, controlled by the seed-storage protein glutelin GluB-1 gene promoter, increases the grain Fe and Zn concentration, but also affects the homeostasis of other minerals in transgenic wheat grain

    ANISOTROPY AND MAGNETO-OPTICAL PROPERTIES OF SPUTTERED Co/Ni MULTILAYER THIN FILMS

    Get PDF
    Several series of sputtered Co/Ni multilayer thin films have been investigated. The volume and interface contributions to the magnetic anisotropy were determined from magnetization measurements, and the interface anisotropy, Ki= 0.23 ± 0.03 erg/cm2, was found to support perpendicular magnetic anisotropy. The anisotropy constant, K, increased with the Au buffer layer thickness, indicating the buffer layer was crucial to the perpendicular magnetic anisotropy. The polar Kerr rotation and coercivity as a function of temperature, and room temperature magneto-optical figure of merit are presented in this paper

    Growth of High Quality CdZnTe Films by Close-Spaced Sublimation Method

    Get PDF
    AbstractThe effects of substrate temperature, source temperature and separation distance between the source and substrate on the growth rate of CdZnTe (CZT) films by Closed Space Sublimation (CSS) were systematically investigated. A maximum deposition rate of above 5μm/min was achieved with a source temperature of 650°C. The CZT films were heat treated by CdCl2 vapour in CSS system. The CdCl2 treatment on the structural and optical properties of CZT films was studied
    corecore