10 research outputs found

    The Effect of Rearing Conditions on Carcass Traits, Meat Quality and the Compositions of Fatty Acid and Amino Acid of LTL in Heigai Pigs

    No full text
    The present study evaluates the influence of captivity and grazing rearing conditions on the carcass traits, meat quality and fatty acid profiles of Heigai pigs. Ten Heigai pigs with market weight were randomly selected from both the indoor feeding farm and outdoor grazing farm groups (FF and GF; five pigs per group) for measuring production performance. The results showed that the shear force of longissimus thoracis et lumborum (LTL) in the GF group tended to increase (p = 0.06), and triglyceride and cholesterol contents in LTL and psoas major muscle (PMM) of the GF group significantly increased and decreased, respectively (p < 0.05). The proportion of saturated fatty acids (SFA) was significantly increased (p < 0.05) in the GF group. Meanwhile, the ratios of unsaturated fatty acid (UFA), polyunsaturated fatty acid (PUFA), monounsaturated fatty acid (MUFA) and the content of flavor amino acid of the LTL in the GF group were significantly decreased (p < 0.05). The GF upregulated the expression of MyHC-IIb and lipogenic genes, such as GLUT4 and LPL (p < 0.05), in LTL and PMM, but downregulated the expression of MyHC-I, MyHC-IIa, PPARγ and leptin (p < 0.05). In conclusion, these results suggested that the different rearing conditions can alter the meat qualities by mediating the muscle fiber type and lipid metabolism of Heigai pigs

    Single-nucleus and bulk RNA sequencing reveal cellular and transcriptional mechanisms underlying lipid dynamics in high marbled pork

    No full text
    Abstract Pork is the most consumed meat in the world, and its quality is associated with human health. Intramuscular fat (IMF) deposition (also called marbling) is a key factor positively correlated with various quality traits and lipo-nutritional values of meat. However, the cell dynamics and transcriptional programs underlying lipid deposition in highly marbled meat are still unclear. Here, we used Laiwu pigs with high (HLW) or low (LLW) IMF contents to explore the cellular and transcriptional mechanisms underlying lipid deposition in highly-marbled pork by single-nucleus RNA sequencing (snRNA-seq) and bulk RNA sequencing. The HLW group had higher IMF contents but less drip loss than the LLW group. Lipidomics results revelled the changes of overall lipid classes composition (e.g., glycerolipids including triglycerides, diglycerides, and monoglycerides; sphingolipids including ceramides and monohexose ceramide significantly increased) between HLW and LLW groups. SnRNA-seq revealed nine distinct cell clusters, and the HLW group had a higher percentage of adipocytes (1.40% vs. 0.17%) than the LLW group. We identified 3 subpopulations of adipocytes, including PDE4D+/PDE7B+ (in HLW and LLW), DGAT2+/SCD+ (mostly in HLW) and FABP5+/SIAH1+ cells (mostly in HLW). Moreover, we showed that fibro/adipogenic progenitors could differentiate into IMF cells and contribute to 43.35% of adipocytes in mice. In addition, RNA-seq revealed different genes involved in lipid metabolism and fatty acid elongation. Our study provides new insights into the cellular and molecular signatures of marbling formation; such knowledge may facilitate the development of new strategies to increase IMF deposition and the lipo-nutritional quality of high marbled pork

    TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine.

    No full text
    TMEM41B and VMP1 are integral membrane proteins of the endoplasmic reticulum (ER) and regulate the formation of autophagosomes, lipid droplets (LDs), and lipoproteins. Recently, TMEM41B was identified as a crucial host factor for infection by all coronaviruses and flaviviruses. The molecular function of TMEM41B and VMP1, which belong to a large evolutionarily conserved family, remains elusive. Here, we show that TMEM41B and VMP1 are phospholipid scramblases whose deficiency impairs the normal cellular distribution of cholesterol and phosphatidylserine. Their mechanism of action on LD formation is likely to be different from that of seipin. Their role in maintaining cellular phosphatidylserine and cholesterol homeostasis may partially explain their requirement for viral infection. Our results suggest that the proper sorting and distribution of cellular lipids are essential for organelle biogenesis and viral infection
    corecore