43 research outputs found

    Generating Handwritten Chinese Characters using CycleGAN

    Full text link
    Handwriting of Chinese has long been an important skill in East Asia. However, automatic generation of handwritten Chinese characters poses a great challenge due to the large number of characters. Various machine learning techniques have been used to recognize Chinese characters, but few works have studied the handwritten Chinese character generation problem, especially with unpaired training data. In this work, we formulate the Chinese handwritten character generation as a problem that learns a mapping from an existing printed font to a personalized handwritten style. We further propose DenseNet CycleGAN to generate Chinese handwritten characters. Our method is applied not only to commonly used Chinese characters but also to calligraphy work with aesthetic values. Furthermore, we propose content accuracy and style discrepancy as the evaluation metrics to assess the quality of the handwritten characters generated. We then use our proposed metrics to evaluate the generated characters from CASIA dataset as well as our newly introduced Lanting calligraphy dataset.Comment: Accepted at WACV 201

    Investigate the plasmonic enhanced solar photothermal effect of gold nanorod nanofilm

    Full text link
    Gold nanospheres (Au NSs) and gold nanorods (Au NRs) are traditional noble metal plasmonic nanomaterials. Particularly, Au NRs with tunable longitudinal plasmon resonance from visible to the near infrared (NIR) range were suitable for high efficient photothermal applications due to extended light receiving range. In this work, we synthesized Au NRs and Au NSs of similar volume, and subsequently developed them into Au NR/PVDF and Au NS/PVDF nanofilm, both of which exhibited excellent solar photothermal performance evaluated by solar photothermal experiments. We found that Au NR/PVDF nanofilm showed higher solar photothermal performance than Au NS/PVDF nanofilm. Through detailed analysis, such as morphological characterization, optical measurement, and finite element method (FEM) modeling, we found that the plasmonic coupling effects inside the aggregated Au NRs nanoclusters contributed to the spectral blue-shifts and intensified photothermal performance. Compare to Au NS/PVDF nanofilms, Au NR/PVDF nanofilm exhibited higher efficient light-to-heat conversion rate, because of the extended light receiving range and high absorbance, as the result of strong plasmonic interactions inside nanoclusters, which was further validated by monochromatic laser photothermal experiments and FEM simulations. Our work proved that the Au NRs have huge potential for plasmonic solar photothermal applications, and are envisioned for novel plasmonic applications

    Primary and albedo protons detected by the Lunar Lander Neutron and Dosimetry experiment on the lunar farside

    Get PDF
    The Lunar Lander Neutron and Dosimetry (LND) Experiment aboard the Chang’E-4 Lander on the lunar far-side measures energetic charged and neutral particles and monitors the corresponding radiation levels. During solar quiet times, galactic cosmic rays (GCRs) are the dominating component of charged particles on the lunar surface. Moreover, the interaction of GCRs with the lunar regolith also results in upward-directed albedo protons which are measured by the LND. In this work, we used calibrated LND data to study the GCR primary and albedo protons. We calculate the averaged GCR proton spectrum in the range of 9–368 MeV and the averaged albedo proton flux between 64.7 and 76.7 MeV from June 2019 (the seventh lunar day after Chang’E-4’s landing) to July 2020 (the 20th lunar day). We compare the primary proton measurements of LND with the Electron Proton Helium INstrument (EPHIN) on SOHO. The comparison shows a reasonable agreement of the GCR proton spectra among different instruments and illustrates the capability of LND. Likewise, the albedo proton measurements of LND are also comparable with measurements by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) during solar minimum. Our measurements confirm predictions from the Radiation Environment and Dose at the Moon (REDMoon) model. Finally, we provide the ratio of albedo protons to primary protons for measurements in the energy range of 64.7–76.7 MeV which confirm simulations over a broader energy range

    An experimental study of a novel integrated desiccant air conditioning system for building applications

    Get PDF
    To date, the application of liquid desiccant air conditioning systems in built environment applications, particularly small scale, has been limited. This is primarily due to large system size and complexity, issues of desiccant solution leakage and carry-over and equipment corrosion. As a result, a novel integrated desiccant air conditioning system (IDCS) has been developed. The system combines the regenerator, dehumidifier and evaporative inter-cooler into a single membrane based heat and mass exchanger. This paper presents an evaluation, based on experimental data, of the novel IDCS operating with a potassium formate (CHKO2) desiccant working fluid. A range of tests have been completed to characterise the performance of the dehumidifier, regenerator and complete IDCS. Cooling output in the range of 570 to 1362W and dehumidifier effectiveness in the range of 30 to 47% are presented. An issue encountered has been an imbalance between moisture removal rate in the dehumidifier and moisture addition rate in the regenerator. As a result, an adjusted thermal COP (COPth,adj) value has been calculated. COPth,adj values of 1.26 have been achieved with an average of 0.72. Electrical COP (COPel) values of 3.67 have been achieved with an average of 2.5. The work demonstrates that the novel IDCS concept is viable and has provided progressto the field of liquid desiccant air conditioning technology for building applications. Further work is required in order to address the main issue of mass imbalance between the dehumidifier and regenerator

    Photoredox-catalyzed reaction as a powerful tool for rapid natural product Gem -dimethylation modification: discovery of potent anti-cancer agents with improved druggability

    Get PDF
    Tylophorine has diverse biological activities; however, the stability, solubility, and central nervous system toxicity have severely limited use of tylophorine. The gem -dimethyl group is an organic chemistry functional group that consists of two methyl groups bonded to the same carbon atom. This feature has gained significant attention in medicinal chemistry due to its unique properties and potential applications in drug design. We applied a new photoredox methodology to tylophorine modification, resulting in a series of gem-dimethyl tylophorine analogues. Among the analogues, compound 4b demonstrated promising activity against a wide range of tumor cell lines and exhibited significantly improved drug-like properties, including enhanced solubility and stability. Compound 4b showed an exceptional inhibitory effect (7.8 nM) against a C481S mutation-induced ibrutinib-resistant non-Hodgkin’s lymphoma cell line, as well as primary tumor cell lines obtained from patients. Importantly, compound 4b exhibited significantly reduced anti-proliferative activity against the normal cell line tested, indicating the potential for an enhanced therapeutic window for compound 4b . Based on these early-stage data, we believe that our study provides a solid foundation for the development of new therapeutic agents for potential drug-resistant cancer treatment in the near future

    The Lunar Lander Neutron and Dosimetry (LND) Experiment on Chang'E 4

    Get PDF
    Chang'E 4 is the first mission to the far side of the Moon and consists of a lander, a rover, and a relay spacecraft. Lander and rover were launched at 18:23 UTC on December 7, 2018 and landed in the von K\'arm\'an crater at 02:26 UTC on January 3, 2019. Here we describe the Lunar Lander Neutron \& Dosimetry experiment (LND) which is part of the Chang'E 4 Lander scientific payload. Its chief scientific goal is to obtain first active dosimetric measurements on the surface of the Moon. LND also provides observations of fast neutrons which are a result of the interaction of high-energy particle radiation with the lunar regolith and of their thermalized counterpart, thermal neutrons, which are a sensitive indicator of subsurface water content.Comment: 38 pages, submitted to Space Science Review

    Fuel cell technology for domestic built environment applications: state of-the-art review

    Get PDF
    Fuel cells produce heat when generating electricity, thus they are of particular interest for combined heat and power (CHP) and combined cooling heat and power (CCHP) applications, also known as tri-generation systems. CHP and tri-generation systems offer high energy conversion efficiency and hence the potential to reduce fuel costs and CO2 emissions. This article serves to provide a state-of-the-art review of fuel cell technology operating in the domestic built environment in CHP and tri-generation system applications. The review aims to carry out an assessment of the following topics: (1) the operational advantages fuel cells offer in CHP and tri-generation system configurations, specifically, compared to conventional combustion-based technologies such as Stirling engines, (2) how decarbonisation, running cost and energy security in the domestic built environment may be addressed through the use of fuel cell technology, and (3) what has been done to date and what needs to be done in the future. The article commences with a review of fuel cell technology, then moves on to examine fuel cell CHP systems operating in the domestic built environment, and finally explores fuel cell tri-generation systems in domestic built environment applications. The article concludes with an assessment of the present development of, and future challenges for, domestic fuel cells operating in CHP and tri-generation systems. As fuel cells are an emergent technology the article draws on a breadth of literature, data and experience, mostly from the United Kingdom, Germany, Japan, America and Australia. Fuel cells are a technology of the future here today, providing a change in the way heat and power are supplied to end users. Fuel cells operating in CHP and tri-generation systems in domestic built environment applications could finally provide the means by which energy generation can transfer from centralised to decentralised locales in a sustainable and effective manner

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere

    Full text link
    Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360{\deg} perspective in the ecliptic plane. It will deploy three 120{\deg}-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30{\deg} upstream of the Earth, the second, S2, 90{\deg} downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere - the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.Comment: 41 pages, 6 figures, 1 table, to be published in Advances in Space Researc
    corecore